Menu Close

E-z-2-x-2-y-2-dV-with-the-boundaries-of-the-integration-region-E-defined-by-x-2-y-2-z-2-4-x-2-y-2-1-z-




Question Number 220674 by Nicholas666 last updated on 17/May/25
            ∫∫∫_( E )   (z^2 /( (√(x^2  + y^2 ))))  dV       with the boundaries of the integration                  region E defined by;         • x^2  + y^2 + z^2  ≤ 4        • x^2  + y^2  ≥ 1        • z ≥ 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\int\int\int_{\:{E}\:} \:\:\frac{{z}^{\mathrm{2}} }{\:\sqrt{{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} }}\:\:{dV} \\ $$$$\:\:\:\:\:\mathrm{with}\:\mathrm{the}\:\mathrm{boundaries}\:\mathrm{of}\:\mathrm{the}\:\mathrm{integration}\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\mathrm{region}\:{E}\:\mathrm{defined}\:\mathrm{by};\: \\ $$$$\:\:\:\:\:\:\bullet\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} +\:{z}^{\mathrm{2}} \:\leqslant\:\mathrm{4} \\ $$$$\:\:\:\:\:\:\bullet\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:\geqslant\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\bullet\:{z}\:\geqslant\:\mathrm{0} \\ $$$$ \\ $$
Answered by mr W last updated on 17/May/25
I=∫_0 ^(√3) ∫_1 ^(√(4−z^2 )) (z^2 /r)×2πrdrdz    =2π∫_0 ^(√3) z^2 ((√(4−z^2 ))−1)dz    =2π(((2π)/3)−((3(√3))/4))
$${I}=\int_{\mathrm{0}} ^{\sqrt{\mathrm{3}}} \int_{\mathrm{1}} ^{\sqrt{\mathrm{4}−{z}^{\mathrm{2}} }} \frac{{z}^{\mathrm{2}} }{{r}}×\mathrm{2}\pi{rdrdz} \\ $$$$\:\:=\mathrm{2}\pi\int_{\mathrm{0}} ^{\sqrt{\mathrm{3}}} {z}^{\mathrm{2}} \left(\sqrt{\mathrm{4}−{z}^{\mathrm{2}} }−\mathrm{1}\right){dz} \\ $$$$\:\:=\mathrm{2}\pi\left(\frac{\mathrm{2}\pi}{\mathrm{3}}−\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{4}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *