Question Number 220630 by Mingma last updated on 17/May/25

Answered by mr W last updated on 17/May/25

Commented by mr W last updated on 17/May/25

$$\Delta{BCD}\:{is}\:{equilateral}. \\ $$$$\Rightarrow{BD}={BC}={CD}={a},\:{say} \\ $$$${say}\:{the}\:{center}\:{of}\:{circumcircle}\:{from} \\ $$$$\Delta{ABD}\:{is}\:{at}\:{O}.\:{we}\:{have}\: \\ $$$$\angle{BOD}=\mathrm{2}×\angle{BAD}=\mathrm{2}×\mathrm{30}°=\mathrm{60}° \\ $$$$\Rightarrow{OA}={OB}={OD}={radius}={BD}={a} \\ $$$${acc}.\:{to}\:{cosine}\:{law}: \\ $$$${AB}^{\mathrm{2}} ={a}^{\mathrm{2}} +{a}^{\mathrm{2}} −\mathrm{2}{a}×{a}\:\mathrm{cos}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:=\mathrm{2}{a}^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} \:\mathrm{cos}\:\theta \\ $$$${AD}^{\mathrm{2}} ={a}^{\mathrm{2}} +{a}^{\mathrm{2}} −\mathrm{2}{a}×{a}\:\mathrm{cos}\:\left(\mathrm{2}\pi−\theta−\frac{\pi}{\mathrm{3}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:=\mathrm{2}{a}^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} \:\mathrm{cos}\:\left(\theta+\frac{\pi}{\mathrm{3}}\right) \\ $$$${AB}^{\mathrm{2}} +{AD}^{\mathrm{2}} =\mathrm{4}{a}^{\mathrm{2}} −\sqrt{\mathrm{3}}{a}^{\mathrm{2}} \left(\sqrt{\mathrm{3}}\:\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right) \\ $$$${acc}.\:{to}\:{cosine}\:{law}\:{again}: \\ $$$${AC}^{\mathrm{2}} ={a}^{\mathrm{2}} +\left(\sqrt{\mathrm{3}}{a}\right)^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{3}}{a}^{\mathrm{2}} \:\mathrm{cos}\:\left(\theta+\frac{\pi}{\mathrm{6}}\right) \\ $$$$\:\:\:=\mathrm{4}{a}^{\mathrm{2}} −\sqrt{\mathrm{3}}{a}^{\mathrm{2}} \left(\sqrt{\mathrm{3}}\:\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right) \\ $$$$\Rightarrow{AC}^{\mathrm{2}} ={AB}^{\mathrm{2}} +{AD}^{\mathrm{2}} \\ $$
Commented by Mingma last updated on 17/May/25
Can you please show details of your algebra? Also if you can use vector method as well by putting it in x-y plane would be nice. I would love to see more analytical way for this problem
Commented by mr W last updated on 17/May/25

$${i}'{ve}\:{added}\:{some}\:{explanation}.\:{if}\:{you} \\ $$$${need}\:{more},\:{please}\:{tell}\:{me}\:{where}. \\ $$
Commented by mr W last updated on 18/May/25

$${a}\:{pure}\:{geometry}\:{method}\:{see}\:{Q}\mathrm{220726} \\ $$