Menu Close

Question-220630




Question Number 220630 by Mingma last updated on 17/May/25
Answered by mr W last updated on 17/May/25
Commented by mr W last updated on 17/May/25
ΔBCD is equilateral.  ⇒BD=BC=CD=a, say  say the center of circumcircle from  ΔABD is at O. we have   ∠BOD=2×∠BAD=2×30°=60°  ⇒OA=OB=OD=radius=BD=a  acc. to cosine law:  AB^2 =a^2 +a^2 −2a×a cos θ            =2a^2 −2a^2  cos θ  AD^2 =a^2 +a^2 −2a×a cos (2π−θ−(π/3))            =2a^2 −2a^2  cos (θ+(π/3))  AB^2 +AD^2 =4a^2 −(√3)a^2 ((√3) cos θ−sin θ)  acc. to cosine law again:  AC^2 =a^2 +((√3)a)^2 −2(√3)a^2  cos (θ+(π/6))     =4a^2 −(√3)a^2 ((√3) cos θ−sin θ)  ⇒AC^2 =AB^2 +AD^2
$$\Delta{BCD}\:{is}\:{equilateral}. \\ $$$$\Rightarrow{BD}={BC}={CD}={a},\:{say} \\ $$$${say}\:{the}\:{center}\:{of}\:{circumcircle}\:{from} \\ $$$$\Delta{ABD}\:{is}\:{at}\:{O}.\:{we}\:{have}\: \\ $$$$\angle{BOD}=\mathrm{2}×\angle{BAD}=\mathrm{2}×\mathrm{30}°=\mathrm{60}° \\ $$$$\Rightarrow{OA}={OB}={OD}={radius}={BD}={a} \\ $$$${acc}.\:{to}\:{cosine}\:{law}: \\ $$$${AB}^{\mathrm{2}} ={a}^{\mathrm{2}} +{a}^{\mathrm{2}} −\mathrm{2}{a}×{a}\:\mathrm{cos}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:=\mathrm{2}{a}^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} \:\mathrm{cos}\:\theta \\ $$$${AD}^{\mathrm{2}} ={a}^{\mathrm{2}} +{a}^{\mathrm{2}} −\mathrm{2}{a}×{a}\:\mathrm{cos}\:\left(\mathrm{2}\pi−\theta−\frac{\pi}{\mathrm{3}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:=\mathrm{2}{a}^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} \:\mathrm{cos}\:\left(\theta+\frac{\pi}{\mathrm{3}}\right) \\ $$$${AB}^{\mathrm{2}} +{AD}^{\mathrm{2}} =\mathrm{4}{a}^{\mathrm{2}} −\sqrt{\mathrm{3}}{a}^{\mathrm{2}} \left(\sqrt{\mathrm{3}}\:\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right) \\ $$$${acc}.\:{to}\:{cosine}\:{law}\:{again}: \\ $$$${AC}^{\mathrm{2}} ={a}^{\mathrm{2}} +\left(\sqrt{\mathrm{3}}{a}\right)^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{3}}{a}^{\mathrm{2}} \:\mathrm{cos}\:\left(\theta+\frac{\pi}{\mathrm{6}}\right) \\ $$$$\:\:\:=\mathrm{4}{a}^{\mathrm{2}} −\sqrt{\mathrm{3}}{a}^{\mathrm{2}} \left(\sqrt{\mathrm{3}}\:\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right) \\ $$$$\Rightarrow{AC}^{\mathrm{2}} ={AB}^{\mathrm{2}} +{AD}^{\mathrm{2}} \\ $$
Commented by Mingma last updated on 17/May/25
Can you please show details of your algebra? Also if you can use vector method as well by putting it in x-y plane would be nice. I would love to see more analytical way for this problem
Commented by mr W last updated on 17/May/25
i′ve added some explanation. if you  need more, please tell me where.
$${i}'{ve}\:{added}\:{some}\:{explanation}.\:{if}\:{you} \\ $$$${need}\:{more},\:{please}\:{tell}\:{me}\:{where}. \\ $$
Commented by mr W last updated on 18/May/25
a pure geometry method see Q220726
$${a}\:{pure}\:{geometry}\:{method}\:{see}\:{Q}\mathrm{220726} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *