Menu Close

x-x-2-1-dx-




Question Number 220677 by fantastic last updated on 17/May/25
∫(√(x+(√(x^2 +1 ))))dx
$$\int\sqrt{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}\:}}{dx} \\ $$
Answered by Frix last updated on 17/May/25
∫(√(x+(√(x^2 +1))))dx =^([t=(√(x+(√(x^2 +1))))])   =∫(t^2 +t^(−2) )dt=(t^3 /3)−t^(−1) =  =((2(2x−(√(x^2 +1)))(√(x+(√(x^2 +1)))))/3)+C
$$\int\sqrt{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}{dx}\:\overset{\left[{t}=\sqrt{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}\right]} {=} \\ $$$$=\int\left({t}^{\mathrm{2}} +{t}^{−\mathrm{2}} \right){dt}=\frac{{t}^{\mathrm{3}} }{\mathrm{3}}−{t}^{−\mathrm{1}} = \\ $$$$=\frac{\mathrm{2}\left(\mathrm{2}{x}−\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right)\sqrt{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}}{\mathrm{3}}+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *