Question Number 220715 by Noorzai last updated on 18/May/25

Commented by Noorzai last updated on 18/May/25

$${do}\:{you}\:{help}\:{me} \\ $$$$ \\ $$
Answered by SdC355 last updated on 18/May/25

$$\int\:\:{xa}^{{x}} \:\mathrm{d}{x}= \\ $$$$\frac{\mathrm{d}\:\:}{\mathrm{d}{x}}\left({xa}^{{x}} \right)={a}^{{x}} +{x}\centerdot\mathrm{ln}\left({a}\right){a}^{{x}} \\ $$$$\int\:\:\frac{\mathrm{d}\:\:}{\mathrm{d}{x}}\left({x}\centerdot{a}^{{x}} \right)\:\mathrm{d}{x}=\int\:\:\mathrm{d}\left({x}\centerdot{a}^{{x}} \right)=\int\:\:{a}^{{x}} \:\mathrm{d}{x}+\int\:\:{x}\mathrm{ln}\left({a}\right){a}^{{x}} \:\mathrm{d}{x} \\ $$$${x}\centerdot{a}^{{x}} +\mathrm{Const}=\int\:\:{a}^{{x}} \:\mathrm{d}{x}+\mathrm{ln}\left({a}\right)\int\:\:{xa}^{{x}} \:\mathrm{d}{x} \\ $$$${xa}^{{x}} −\int\:{a}^{{x}} \:\mathrm{d}{x}+\mathrm{Const} \\ $$$${xa}^{{x}} −\frac{{a}^{{x}} }{\mathrm{ln}\left({a}\right)}+\mathrm{Const}=\mathrm{ln}\left({a}\right)\int\:{xa}^{{x}} \:\mathrm{d}{x} \\ $$$$\frac{\left({x}\centerdot\mathrm{ln}\left({a}\right)−\mathrm{1}\right){a}^{{x}} }{\mathrm{ln}^{\mathrm{2}} \left({a}\right)}+\mathrm{Const}=\int\:\:{xa}^{{x}} \:\mathrm{d}{x} \\ $$$$\therefore\:\int\:\:\mathrm{3}{x}\centerdot\mathrm{5}^{{x}} \:\mathrm{d}{x}=\frac{\mathrm{3}\left({x}\centerdot\mathrm{ln}\left(\mathrm{5}\right)−\mathrm{1}\right)\mathrm{5}^{{x}} }{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{5}\right)}+\mathrm{Const} \\ $$
Commented by Noorzai last updated on 18/May/25

$${thanks}\:{can}\:{you}\:{cleaer} \\ $$
Answered by mr W last updated on 18/May/25

$$=\mathrm{3}\int{xe}^{{x}\mathrm{ln}\:\mathrm{5}} {dx} \\ $$$$=\frac{\mathrm{3}}{\mathrm{ln}\:\mathrm{5}}\int{xd}\left({e}^{{x}\mathrm{ln}\:\mathrm{5}} \right) \\ $$$$=\frac{\mathrm{3}}{\mathrm{ln}\:\mathrm{5}}\left({xe}^{{x}\mathrm{ln}\:{x}} −\int{e}^{{x}\mathrm{ln}\:\mathrm{5}} {dx}\right) \\ $$$$=\frac{\mathrm{3}}{\mathrm{ln}\:\mathrm{5}}\left({x}\mathrm{5}^{{x}} −\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{5}}\int{e}^{{x}\mathrm{ln}\:\mathrm{5}} {d}\left({x}\mathrm{ln}\:\mathrm{5}\right)\right) \\ $$$$=\frac{\mathrm{3}}{\mathrm{ln}\:\mathrm{5}}\left({x}\mathrm{5}^{{x}} −\frac{{e}^{{x}\mathrm{ln}\:\mathrm{5}} }{\mathrm{ln}\:\mathrm{5}}\right)+{C} \\ $$$$=\frac{\mathrm{3}}{\mathrm{ln}\:\mathrm{5}}\left({x}\mathrm{5}^{{x}} −\frac{\mathrm{5}^{{x}} }{\mathrm{ln}\:\mathrm{5}}\right)+{C} \\ $$$$=\frac{\mathrm{3}}{\mathrm{ln}\:\mathrm{5}}\left({x}−\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{5}}\right)\mathrm{5}^{{x}} +{C} \\ $$