Menu Close

211-Find-the-derivative-of-x-where-x-determinant-f-1-x-1-x-1-x-f-2-x-2-x-2-x-f-3-x-3-x-3-x-and-f-1-x-f-2-x-f-3-x-1-x-etc-




Question Number 220863 by fantastic last updated on 20/May/25
(211)      Find the derivative of Δx, where  Δx= determinant (((f_1 (x)),(φ_1 (x)),(Ψ_1 (x))),((f_2 (x)),(φ_2 (x)),(Ψ_2 (x))),((f_3 (x)),(φ_3 (x)),(Ψ_3 (x))))  and f_1 (x) ,f_2 (x), f_3 (x),φ_1 (x), etc. are different functions of x.
$$\left(\mathrm{211}\right) \\ $$$$\:\: \\ $$$${Find}\:{the}\:{derivative}\:{of}\:\Delta{x},\:{where} \\ $$$$\Delta{x}=\begin{vmatrix}{{f}_{\mathrm{1}} \left({x}\right)}&{\phi_{\mathrm{1}} \left({x}\right)}&{\Psi_{\mathrm{1}} \left({x}\right)}\\{{f}_{\mathrm{2}} \left({x}\right)}&{\phi_{\mathrm{2}} \left({x}\right)}&{\Psi_{\mathrm{2}} \left({x}\right)}\\{{f}_{\mathrm{3}} \left({x}\right)}&{\phi_{\mathrm{3}} \left({x}\right)}&{\Psi_{\mathrm{3}} \left({x}\right)}\end{vmatrix} \\ $$$${and}\:{f}_{\mathrm{1}} \left({x}\right)\:,{f}_{\mathrm{2}} \left({x}\right),\:{f}_{\mathrm{3}} \left({x}\right),\phi_{\mathrm{1}} \left({x}\right),\:{etc}.\:{are}\:{different}\:{functions}\:{of}\:{x}. \\ $$
Answered by SdC355 last updated on 20/May/25
f_1 (φ_2 Ψ_3 −φ_3 Ψ_2 )−φ_1 (f_2 Ψ_3 −f_3 Ψ_2 )+Ψ_1 (f_2 φ_3 −φ_2 f_3 )  f_1 φ_2 Ψ_3 −f_1 φ_3 Ψ_2 −f_2 φ_1 Ψ_3 +f_3 φ_1 Ψ_2 +f_2 φ_3 Ψ_3 −f_3 φ_2 Ψ_1
$${f}_{\mathrm{1}} \left(\phi_{\mathrm{2}} \Psi_{\mathrm{3}} −\phi_{\mathrm{3}} \Psi_{\mathrm{2}} \right)−\phi_{\mathrm{1}} \left({f}_{\mathrm{2}} \Psi_{\mathrm{3}} −{f}_{\mathrm{3}} \Psi_{\mathrm{2}} \right)+\Psi_{\mathrm{1}} \left({f}_{\mathrm{2}} \phi_{\mathrm{3}} −\phi_{\mathrm{2}} {f}_{\mathrm{3}} \right) \\ $$$${f}_{\mathrm{1}} \phi_{\mathrm{2}} \Psi_{\mathrm{3}} −{f}_{\mathrm{1}} \phi_{\mathrm{3}} \Psi_{\mathrm{2}} −{f}_{\mathrm{2}} \phi_{\mathrm{1}} \Psi_{\mathrm{3}} +{f}_{\mathrm{3}} \phi_{\mathrm{1}} \Psi_{\mathrm{2}} +{f}_{\mathrm{2}} \phi_{\mathrm{3}} \Psi_{\mathrm{3}} −{f}_{\mathrm{3}} \phi_{\mathrm{2}} \Psi_{\mathrm{1}} \\ $$
Commented by SdC355 last updated on 20/May/25
......  ((d  )/dx){fg}=f^((1)) g+fg^((1))
$$…… \\ $$$$\frac{\mathrm{d}\:\:}{\mathrm{d}{x}}\left\{{f}\mathrm{g}\right\}={f}^{\left(\mathrm{1}\right)} \mathrm{g}+{f}\mathrm{g}^{\left(\mathrm{1}\right)} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *