Question Number 220842 by mnjuly1970 last updated on 20/May/25

$$ \\ $$$$\:\:\:\:\:\:\mathrm{J}=\int_{\mathrm{0}} ^{\:\infty} {e}^{−{t}} {u}_{\pi} \left({t}\right){cos}\left({t}\right){dt}=? \\ $$$$ \\ $$$$\:{note}:\:\:{u}_{{c}} \left({t}\right)=\:\begin{cases}{\:\mathrm{0}\:\:\:\:\:\:\:\:{t}<{c}}\\{\:\mathrm{1}\:\:\:\:\:\:\:\:\:{t}>{c}\:\:}\end{cases}\:\:;\:\:\:\:{c}\geqslant\mathrm{0} \\ $$
Commented by SdC355 last updated on 20/May/25

$$\int_{\mathrm{0}} ^{\:\infty} \:{e}^{−{kt}} {u}_{\pi} \left({t}\right)\mathrm{cos}\left({t}\right)\mathrm{d}{t} \\ $$$$\int_{\mathrm{0}} ^{\:\pi} \:{e}^{−{kt}} \mathrm{cos}\left({t}\right)\mathrm{d}{t}+\int_{\pi} ^{\:\infty} \:{e}^{−{t}} \mathrm{cos}\left({t}\right)\mathrm{d}{t} \\ $$$$\int\:{e}^{−{w}} \mathrm{cos}\left({w}\right)\mathrm{d}{w}=\frac{\mathrm{1}}{\mathrm{2}}{e}^{−{w}} \left(\mathrm{sin}\left({w}\right)−\mathrm{cos}\left({w}\right)\right)+{C} \\ $$$$\int_{\pi} ^{\:\infty} \:=−\frac{\mathrm{1}}{\mathrm{2}}{e}^{−\pi} \\ $$
Commented by mnjuly1970 last updated on 20/May/25

$${thanks}\:{alot}\:{sir}… \\ $$