Question Number 220876 by Spillover last updated on 20/May/25

Answered by Rasheed.Sindhi last updated on 20/May/25

$$\left({a}\right)\:\left({n}+\mathrm{2}\right)\left({n}+\mathrm{1}\right){n} \\ $$$$\:\:\:\:\:\:=\frac{\left({n}+\mathrm{2}\right)\left({n}+\mathrm{1}\right){n}\left({n}−\mathrm{1}\right)!}{\left({n}−\mathrm{1}\right)!} \\ $$$$\:\:\:\:\:=\frac{\left({n}+\mathrm{2}\right)!}{\left({n}−\mathrm{1}\right)!} \\ $$
Commented by Spillover last updated on 20/May/25

$${correct} \\ $$
Answered by Rasheed.Sindhi last updated on 21/May/25

$$\left({b}\right)\:{n}\left({n}−\mathrm{1}\right)…\left({n}−{r}+\mathrm{1}\right) \\ $$$$=\frac{{n}\left({n}−\mathrm{1}\right)…\left({n}−{r}+\mathrm{1}\right)\left({n}−{r}\right)!}{\left({n}−{r}\right)!} \\ $$$$=\frac{{n}!}{\left({n}−{r}\right)!} \\ $$$$ \\ $$
Answered by Rasheed.Sindhi last updated on 21/May/25

$$\left({c}\right)\:\frac{\left({n}+\mathrm{1}\right){n}\left({n}−\mathrm{1}\right)}{\mathrm{3}×\mathrm{2}×\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:=\:\frac{\left({n}+\mathrm{1}\right){n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)!}{\mathrm{3}!\left({n}−\mathrm{2}\right)!} \\ $$$$\:\:\:\:\:\:\:=\:\frac{\left({n}+\mathrm{1}\right)!}{\mathrm{3}!\left({n}−\mathrm{2}\right)!} \\ $$