Menu Close

R-lim-x-1-1-x-3-1-x-4-0-




Question Number 220843 by Nicholas666 last updated on 20/May/25
                      α ∈ R       lim_(x→1)  (((1 − x)^α )/(^3 (√(1 − x^4 ))))        ∈(0,∞)
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\alpha\:\in\:\mathbb{R} \\ $$$$\:\:\:\:\:\mathrm{lim}_{{x}\rightarrow\mathrm{1}} \:\frac{\left(\mathrm{1}\:−\:{x}\right)^{\alpha} }{\:^{\mathrm{3}} \sqrt{\mathrm{1}\:−\:{x}^{\mathrm{4}} }}\:\:\:\:\:\:\:\:\in\left(\mathrm{0},\infty\right) \\ $$$$ \\ $$
Commented by SdC355 last updated on 20/May/25
  lim_(x→1)    ((((d  )/dx)(1−x)^α )/(((d  )/dx)^3 (√(1−x^4 ))))=lim_(x→1)  ((α(1−x)^(α−1) )/((4x^3 )/(3∙^3 (√((1−x)^2 )))))  ∴lim_(x→1)   ((3α(1−x)^(α−1) ∙^3 (√((1−x)^2 )))/(4x^3 ))=0
$$ \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\:\:\frac{\frac{\mathrm{d}\:\:}{\mathrm{d}{x}}\left(\mathrm{1}−{x}\right)^{\alpha} }{\frac{\mathrm{d}\:\:}{\mathrm{d}{x}}\:^{\mathrm{3}} \sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}=\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\alpha\left(\mathrm{1}−{x}\right)^{\alpha−\mathrm{1}} }{\frac{\mathrm{4}{x}^{\mathrm{3}} }{\mathrm{3}\centerdot^{\mathrm{3}} \sqrt{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }}} \\ $$$$\therefore\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\:\frac{\mathrm{3}\alpha\left(\mathrm{1}−{x}\right)^{\alpha−\mathrm{1}} \centerdot^{\mathrm{3}} \sqrt{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }}{\mathrm{4}{x}^{\mathrm{3}} }=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *