Menu Close

Question-220995




Question Number 220995 by hardmath last updated on 21/May/25
Answered by Frix last updated on 22/May/25
Let the red line =1  (1/(sin 30°))=(a/(sin 15°)) ⇒       a=(((√6)−(√2))/2)  (a/(sin x))=(1/(sin (135°−x)))=((√2)/(cos x +sin x))⇒       a=(((√2)sin x)/(cos x +sin x))=(((√2)tan x)/(1+tan x))  (((√2)tan x)/(1+tan x))=(((√6)−(√2))/2)  tan x =((√3)/3)  x=30°
$$\mathrm{Let}\:\mathrm{the}\:\mathrm{red}\:\mathrm{line}\:=\mathrm{1} \\ $$$$\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{30}°}=\frac{{a}}{\mathrm{sin}\:\mathrm{15}°}\:\Rightarrow \\ $$$$\:\:\:\:\:{a}=\frac{\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\frac{{a}}{\mathrm{sin}\:{x}}=\frac{\mathrm{1}}{\mathrm{sin}\:\left(\mathrm{135}°−{x}\right)}=\frac{\sqrt{\mathrm{2}}}{\mathrm{cos}\:{x}\:+\mathrm{sin}\:{x}}\Rightarrow \\ $$$$\:\:\:\:\:{a}=\frac{\sqrt{\mathrm{2}}\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}\:+\mathrm{sin}\:{x}}=\frac{\sqrt{\mathrm{2}}\mathrm{tan}\:{x}}{\mathrm{1}+\mathrm{tan}\:{x}} \\ $$$$\frac{\sqrt{\mathrm{2}}\mathrm{tan}\:{x}}{\mathrm{1}+\mathrm{tan}\:{x}}=\frac{\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\mathrm{tan}\:{x}\:=\frac{\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$${x}=\mathrm{30}° \\ $$
Commented by hardmath last updated on 22/May/25
  Why did it become 1?
$$ \\ $$Why did it become 1?
Commented by Frix last updated on 22/May/25
Since only angles are given you can assume  any length for one of the sides.
$$\mathrm{Since}\:\mathrm{only}\:\mathrm{angles}\:\mathrm{are}\:\mathrm{given}\:\mathrm{you}\:\mathrm{can}\:\mathrm{assume} \\ $$$$\mathrm{any}\:\mathrm{length}\:\mathrm{for}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sides}. \\ $$
Answered by fantastic last updated on 22/May/25
Commented by fantastic last updated on 22/May/25
am i wrong
$${am}\:{i}\:{wrong} \\ $$
Commented by hardmath last updated on 22/May/25
Answer: 30°
$$\mathrm{Answer}:\:\mathrm{30}° \\ $$
Commented by mehdee7396 last updated on 24/May/25

Leave a Reply

Your email address will not be published. Required fields are marked *