Menu Close

x-2-5-x-6-dx-




Question Number 220948 by fantastic last updated on 21/May/25
∫ x^2 (√(5−x^6 ))dx
$$\int\:{x}^{\mathrm{2}} \sqrt{\mathrm{5}−{x}^{\mathrm{6}} }{dx} \\ $$
Answered by SdC355 last updated on 21/May/25
x^3 =u  (du/dx)=3x^2  → du=3x^2 dx  (1/3)∫  (√(5−u^2 )) du=(1/6)(x^3 (√(5−x^6 ))+5∙sin^(−1) ((1/( (√5)))x^3 )+Const
$${x}^{\mathrm{3}} ={u} \\ $$$$\frac{\mathrm{d}{u}}{\mathrm{d}{x}}=\mathrm{3}{x}^{\mathrm{2}} \:\rightarrow\:\mathrm{d}{u}=\mathrm{3}{x}^{\mathrm{2}} \mathrm{d}{x} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}\int\:\:\sqrt{\mathrm{5}−{u}^{\mathrm{2}} }\:\mathrm{d}{u}=\frac{\mathrm{1}}{\mathrm{6}}\left({x}^{\mathrm{3}} \sqrt{\mathrm{5}−{x}^{\mathrm{6}} }+\mathrm{5}\centerdot\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}{x}^{\mathrm{3}} \right)+\mathrm{Const}\right. \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *