Menu Close

prove-P-d-dt-f-t-2-d-dt-g-t-2-dt-P-C-1-f-1-t-C-2-g-1-t-C-1-2-C-2-2-dt-




Question Number 221036 by SdC355 last updated on 23/May/25
prove  ∫_(P∈[ε,ε+δ]) (√((((d  )/dt)f(t))^2 +(((d  )/dt)g(t))^2 )) dt≤∫_(P∈[ε,ε+δ])  ((C_1 f^((1)) (t)+C_2 g^((1)) (t))/( (√(C_1 ^2 +C_2 ^2 )))) dt
$$\mathrm{prove} \\ $$$$\int_{{P}\in\left[\epsilon,\epsilon+\delta\right]} \sqrt{\left(\frac{\mathrm{d}\:\:}{\mathrm{d}{t}}{f}\left({t}\right)\right)^{\mathrm{2}} +\left(\frac{\mathrm{d}\:\:}{\mathrm{d}{t}}\mathrm{g}\left({t}\right)\right)^{\mathrm{2}} }\:\mathrm{d}{t}\leq\int_{{P}\in\left[\epsilon,\epsilon+\delta\right]} \:\frac{{C}_{\mathrm{1}} {f}^{\left(\mathrm{1}\right)} \left({t}\right)+{C}_{\mathrm{2}} \mathrm{g}^{\left(\mathrm{1}\right)} \left({t}\right)}{\:\sqrt{{C}_{\mathrm{1}} ^{\mathrm{2}} +{C}_{\mathrm{2}} ^{\mathrm{2}} }}\:\mathrm{d}{t} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *