Menu Close

Question-221047




Question Number 221047 by universe last updated on 23/May/25
Answered by breniam last updated on 24/May/25
=lim_(n→∞) (Σ_(r=1) ^n Σ_(k=0) ^(2r) (((−1)^(k+1) (k−1))/((k+1)!))−Σ_(r=1) ^n Σ_(k=0) ^(2r−1) (((−1)^(k+1) (k−1))/((k+1)!)))=  lim_(n→∞) (−Σ_(r=1) ^n ((2r−1)/((2r+1)!)))=−Σ_(r=1) ^∞ ((2r−1)/((2r+1)!))=−Σ_(r=1) ^∞ (1/((2r)!))+2Σ_(r=1) ^∞ (1/((2r+1)!))=  −Σ_(r=1) ^∞ (((−1)^r )/(r!))+Σ_(r=1) ^∞ (1/((2r+1)!))=−Σ_(r=0) ^∞ (((−1)^r )/(r!))+1−1+Σ_(r=0) ^∞ (1/((2r+1)!))=  −e^(−1) +((e^1 −e^(−1) )/2)−=(e/2)−(3/(2e))
$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{r}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} \left({k}−\mathrm{1}\right)}{\left({k}+\mathrm{1}\right)!}−\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{r}−\mathrm{1}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} \left({k}−\mathrm{1}\right)}{\left({k}+\mathrm{1}\right)!}\right)= \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(−\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{2}{r}−\mathrm{1}}{\left(\mathrm{2}{r}+\mathrm{1}\right)!}\right)=−\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{2}{r}−\mathrm{1}}{\left(\mathrm{2}{r}+\mathrm{1}\right)!}=−\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{r}\right)!}+\mathrm{2}\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{r}+\mathrm{1}\right)!}= \\ $$$$−\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{r}} }{{r}!}+\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{r}+\mathrm{1}\right)!}=−\underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{r}} }{{r}!}+\mathrm{1}−\mathrm{1}+\underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{r}+\mathrm{1}\right)!}= \\ $$$$−{e}^{−\mathrm{1}} +\frac{{e}^{\mathrm{1}} −{e}^{−\mathrm{1}} }{\mathrm{2}}−=\frac{{e}}{\mathrm{2}}−\frac{\mathrm{3}}{\mathrm{2}{e}} \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *