Menu Close

Prove-0-4-cos-x-sinh-x-1-6-sinh-x-sinh-3x-4-sinh-2-x-2-sinh-2-2x-4-sinh-4-x-4-cosh-4-x-dx-6-2-




Question Number 221100 by Nicholas666 last updated on 24/May/25
                      Prove;    ∫_0 ^( +∞)  ((4∙cos x ∙ ((sinh x ))^(1/(6  )) )/(sinh x + sinh 3x + 4 sinh^2  x − 2 sinh^2  2x + 4 sinh^4  x + 4 cosh^4 x)) dx = (𝛑/( (√6) + 2))
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Prove}}; \\ $$$$\:\:\int_{\mathrm{0}} ^{\:+\infty} \:\frac{\mathrm{4}\centerdot\boldsymbol{\mathrm{cos}}\:\boldsymbol{{x}}\:\centerdot\:\sqrt[{\mathrm{6}\:\:}]{\boldsymbol{\mathrm{sinh}}\:\boldsymbol{{x}}\:}}{\boldsymbol{\mathrm{sinh}}\:\boldsymbol{{x}}\:+\:\boldsymbol{\mathrm{sinh}}\:\mathrm{3}\boldsymbol{{x}}\:+\:\mathrm{4}\:\boldsymbol{\mathrm{sinh}}^{\mathrm{2}} \:\boldsymbol{{x}}\:−\:\mathrm{2}\:\boldsymbol{\mathrm{sinh}}^{\mathrm{2}} \:\mathrm{2}\boldsymbol{{x}}\:+\:\mathrm{4}\:\boldsymbol{\mathrm{sinh}}^{\mathrm{4}} \:\boldsymbol{{x}}\:+\:\mathrm{4}\:\boldsymbol{\mathrm{cosh}}^{\mathrm{4}} \boldsymbol{{x}}}\:\boldsymbol{\mathrm{d}{x}}\:=\:\frac{\boldsymbol{\pi}}{\:\sqrt{\mathrm{6}}\:+\:\mathrm{2}}\:\:\:\:\:\:\: \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *