Menu Close

f-x-1-2-x-1-3-x-1-4-x-1-4000-x-f-2-f-3-f-4-




Question Number 221153 by gregori last updated on 25/May/25
  f(x)= (1/2^x ) + (1/3^x ) + (1/4^x ) + ... +(1/(4000^x ))    f(2) + f(3) + f(4)+ ... =?
$$\:\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}^{{x}} }\:+\:\frac{\mathrm{1}}{\mathrm{3}^{{x}} }\:+\:\frac{\mathrm{1}}{\mathrm{4}^{{x}} }\:+\:…\:+\frac{\mathrm{1}}{\mathrm{4000}^{{x}} } \\ $$$$\:\:{f}\left(\mathrm{2}\right)\:+\:{f}\left(\mathrm{3}\right)\:+\:{f}\left(\mathrm{4}\right)+\:…\:=? \\ $$
Commented by Frix last updated on 25/May/25
((3999)/(4000))
$$\frac{\mathrm{3999}}{\mathrm{4000}} \\ $$
Answered by mr W last updated on 25/May/25
Σ_(x=2) ^∞ f(x)=((1/2^2 )+(1/2^3 )+(1/2^4 )+...)+((1/3^2 )+(1/3^3 )+(1/3^4 )+...)+...+((1/(4000^2 ))+(1/(4000^3 ))+(1/(4000^4 ))+...)  =Σ_(k=2) ^(4000) (Σ_(n=2) ^∞ (1/k^n ))  =Σ_(k=2) ^(4000) ((1/(k^2 (1−(1/k)))))=Σ_(k=2) ^(4000) ((1/(k−1))−(1/k))  =((1/1)−(1/2))+((1/2)−(1/3))+...+((1/(3999))−(1/(4000)))  =1−(1/(4000))  =((3999)/(4000)) ✓
$$\underset{{x}=\mathrm{2}} {\overset{\infty} {\sum}}{f}\left({x}\right)=\left(\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{4}} }+…\right)+\left(\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{4}} }+…\right)+…+\left(\frac{\mathrm{1}}{\mathrm{4000}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4000}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{4000}^{\mathrm{4}} }+…\right) \\ $$$$=\underset{{k}=\mathrm{2}} {\overset{\mathrm{4000}} {\sum}}\left(\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{{n}} }\right) \\ $$$$=\underset{{k}=\mathrm{2}} {\overset{\mathrm{4000}} {\sum}}\left(\frac{\mathrm{1}}{{k}^{\mathrm{2}} \left(\mathrm{1}−\frac{\mathrm{1}}{{k}}\right)}\right)=\underset{{k}=\mathrm{2}} {\overset{\mathrm{4000}} {\sum}}\left(\frac{\mathrm{1}}{{k}−\mathrm{1}}−\frac{\mathrm{1}}{{k}}\right) \\ $$$$=\left(\frac{\mathrm{1}}{\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}}\right)+\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}}\right)+…+\left(\frac{\mathrm{1}}{\mathrm{3999}}−\frac{\mathrm{1}}{\mathrm{4000}}\right) \\ $$$$=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4000}} \\ $$$$=\frac{\mathrm{3999}}{\mathrm{4000}}\:\checkmark \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *