Menu Close

tan-1-x-sec-x-1-sec-x-sec-x-dx-




Question Number 221203 by Nicholas666 last updated on 27/May/25
       ∫ tan(((1/x)/(sec(x)))) + ((1 − sec(x))/(sec(x))) dx
$$ \\ $$$$\:\:\:\:\:\int\:\mathrm{tan}\left(\frac{\frac{\mathrm{1}}{{x}}}{\mathrm{sec}\left({x}\right)}\right)\:+\:\frac{\mathrm{1}\:−\:\mathrm{sec}\left({x}\right)}{\mathrm{sec}\left({x}\right)}\:\mathrm{d}{x} \\ $$$$ \\ $$
Answered by SdC355 last updated on 27/May/25
∫  [tan(((cos(z))/z))+cos(z)−1] dz=??  f(z) primitive function dosen′t Exist  because not exist ∫  tan(((cos(z))/z))dz=F(z)+C
$$\int\:\:\left[\mathrm{tan}\left(\frac{\mathrm{cos}\left({z}\right)}{{z}}\right)+\mathrm{cos}\left({z}\right)−\mathrm{1}\right]\:\mathrm{d}{z}=?? \\ $$$${f}\left({z}\right)\:\mathrm{primitive}\:\mathrm{function}\:\mathrm{dosen}'\mathrm{t}\:\mathrm{Exist} \\ $$$$\mathrm{because}\:\mathrm{not}\:\mathrm{exist}\:\int\:\:\mathrm{tan}\left(\frac{\mathrm{cos}\left({z}\right)}{{z}}\right)\mathrm{d}{z}=\mathrm{F}\left({z}\right)+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *