Menu Close

a-5-2-6-then-a-1-a-




Question Number 221238 by fantastic last updated on 28/May/25
a=5+2(√6) then {(√a)−(1/( (√a)))}=??
$${a}=\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}\:{then}\:\left\{\sqrt{{a}}−\frac{\mathrm{1}}{\:\sqrt{{a}}}\right\}=?? \\ $$
Answered by Rasheed.Sindhi last updated on 28/May/25
a=5+2(√6) then {(√a)−(1/( (√a)))}=??  a=((√2) )^2 +((√3) )^2 +2((√2) )((√3) )     =((√2) +(√3) )^2   (√a) =(√2) +(√3)   (√a) −(1/( (√a) ))=(√2) +(√3) −(1/( (√2) +(√3)))     =(√2) +(√3) −(((√2)−(√3))/(2−3))      =(√2) +(√3) +(√2) −(√3) =2(√2)
$${a}=\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}\:{then}\:\left\{\sqrt{{a}}−\frac{\mathrm{1}}{\:\sqrt{{a}}}\right\}=?? \\ $$$${a}=\left(\sqrt{\mathrm{2}}\:\right)^{\mathrm{2}} +\left(\sqrt{\mathrm{3}}\:\right)^{\mathrm{2}} +\mathrm{2}\left(\sqrt{\mathrm{2}}\:\right)\left(\sqrt{\mathrm{3}}\:\right) \\ $$$$\:\:\:=\left(\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{3}}\:\right)^{\mathrm{2}} \\ $$$$\sqrt{{a}}\:=\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{3}}\: \\ $$$$\sqrt{{a}}\:−\frac{\mathrm{1}}{\:\sqrt{{a}}\:}=\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{3}}\:−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{3}}} \\ $$$$\:\:\:=\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{3}}\:−\frac{\sqrt{\mathrm{2}}−\sqrt{\mathrm{3}}}{\mathrm{2}−\mathrm{3}} \\ $$$$\:\:\:\:=\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{3}}\:+\sqrt{\mathrm{2}}\:−\sqrt{\mathrm{3}}\:=\mathrm{2}\sqrt{\mathrm{2}}\: \\ $$
Answered by fantastic last updated on 28/May/25
((√a)−(1/( (√a))))^2 =a+(1/a)−2=5+2(√6)+(1/(5+2(√6)))−2  =(3+2(√6))+(((5−2(√6))/((5+2(√6))(5−2(√6)))))=(3+2(√6))+((5−2(√6))/(25−24))=3+2(√6)+5−2(√6)=8  So (√a)−(1/( (√a)))=(√8)=2(√2)✓
$$\left(\sqrt{{a}}−\frac{\mathrm{1}}{\:\sqrt{{a}}}\right)^{\mathrm{2}} ={a}+\frac{\mathrm{1}}{{a}}−\mathrm{2}=\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}}−\mathrm{2} \\ $$$$=\left(\mathrm{3}+\mathrm{2}\sqrt{\mathrm{6}}\right)+\left(\frac{\mathrm{5}−\mathrm{2}\sqrt{\mathrm{6}}}{\left(\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}\right)\left(\mathrm{5}−\mathrm{2}\sqrt{\mathrm{6}}\right)}\right)=\left(\mathrm{3}+\mathrm{2}\sqrt{\mathrm{6}}\right)+\frac{\mathrm{5}−\mathrm{2}\sqrt{\mathrm{6}}}{\mathrm{25}−\mathrm{24}}=\mathrm{3}+\mathrm{2}\sqrt{\mathrm{6}}+\mathrm{5}−\mathrm{2}\sqrt{\mathrm{6}}=\mathrm{8} \\ $$$${So}\:\sqrt{{a}}−\frac{\mathrm{1}}{\:\sqrt{{a}}}=\sqrt{\mathrm{8}}=\mathrm{2}\sqrt{\mathrm{2}}\checkmark \\ $$
Answered by MathematicalUser2357 last updated on 28/May/25
Q: a=5+2(√6) then {(√a)−(1/( (√a)))}=??  a=(√(5+2(√6)))=(√(2+2(√6)+3))=(√(((√2))^2 +2(√2)(√3)+((√3))^2 ))=(√(((√2)+(√3))^2 ))=(√2)+(√3)  (1/a)=(1/( (√(5+2(√6)))))=(1/( (√2)+(√3)))=(((√2)−(√3))/(((√2)+(√3))((√2)−(√3))))=(((√2)−(√3))/(((√2))^2 −((√3))^2 ))=(((√2)−(√3))/(−1))=(√3)−(√2)  (√a)−(1/( (√a)))=(√2)+(√3)−((√3)−(√2))=2(√2) ✓
$$\mathrm{Q}:\:{a}=\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}\:{then}\:\left\{\sqrt{{a}}−\frac{\mathrm{1}}{\:\sqrt{{a}}}\right\}=?? \\ $$$${a}=\sqrt{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}}=\sqrt{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{6}}+\mathrm{3}}=\sqrt{\left(\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{2}}\sqrt{\mathrm{3}}+\left(\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }=\sqrt{\left(\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }=\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}} \\ $$$$\frac{\mathrm{1}}{{a}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}}}=\frac{\sqrt{\mathrm{2}}−\sqrt{\mathrm{3}}}{\left(\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}}\right)\left(\sqrt{\mathrm{2}}−\sqrt{\mathrm{3}}\right)}=\frac{\sqrt{\mathrm{2}}−\sqrt{\mathrm{3}}}{\left(\sqrt{\mathrm{2}}\right)^{\mathrm{2}} −\left(\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }=\frac{\sqrt{\mathrm{2}}−\sqrt{\mathrm{3}}}{−\mathrm{1}}=\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}} \\ $$$$\sqrt{{a}}−\frac{\mathrm{1}}{\:\sqrt{{a}}}=\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}}−\left(\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}\right)=\mathrm{2}\sqrt{\mathrm{2}}\:\checkmark \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *