Menu Close

Find-the-remainder-when-x-100-is-divided-by-x-2-x-1-




Question Number 221271 by gregori last updated on 29/May/25
  Find the remainder when x^(100)      is divided by (x^2 +x+1)
$$\:\:{Find}\:{the}\:{remainder}\:{when}\:{x}^{\mathrm{100}} \: \\ $$$$\:\:{is}\:{divided}\:{by}\:\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right) \\ $$
Answered by A5T last updated on 29/May/25
x^2 ≡(−1−x)(mod  x^2 +x+1)  ⇒x^4 ≡x^2 +2x+1≡x(mod x^2 +x+1)  ⇒x^5 ≡x^2 (mod x^2 +x+1)  ⇒x^(100) =(x^4 )^(25) ≡x^(25) =(x^5 )^5 ≡(x^2 )^5 =(x^5 )^2   ⇒x^(100) ≡x^4 ≡x(mod x^2 +x+1)
$$\mathrm{x}^{\mathrm{2}} \equiv\left(−\mathrm{1}−\mathrm{x}\right)\left(\mathrm{mod}\:\:\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right) \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{4}} \equiv\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{1}\equiv\mathrm{x}\left(\mathrm{mod}\:\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right) \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{5}} \equiv\mathrm{x}^{\mathrm{2}} \left(\mathrm{mod}\:\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right) \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{100}} =\left(\mathrm{x}^{\mathrm{4}} \right)^{\mathrm{25}} \equiv\mathrm{x}^{\mathrm{25}} =\left(\mathrm{x}^{\mathrm{5}} \right)^{\mathrm{5}} \equiv\left(\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{5}} =\left(\mathrm{x}^{\mathrm{5}} \right)^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{100}} \equiv\mathrm{x}^{\mathrm{4}} \equiv\mathrm{x}\left(\mathrm{mod}\:\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *