Question Number 221268 by behi834171 last updated on 29/May/25

Commented by behi834171 last updated on 29/May/25

$$\boldsymbol{{CF}}=\sqrt{\mathrm{2}}\:\:,\:\:\boldsymbol{{CD}}=\mathrm{2}\:\:\:,\:\:\:\:\boldsymbol{{CE}}=\mathrm{3} \\ $$$$\boldsymbol{{possible}}\:\boldsymbol{{value}}\left(\boldsymbol{{s}}\right)\:\boldsymbol{{for}}:\boldsymbol{{R}}=? \\ $$$$\boldsymbol{{R}}=\boldsymbol{{radius}}.\:\:\:\boldsymbol{{A}}=\boldsymbol{{center}} \\ $$
Answered by mr W last updated on 29/May/25

Commented by mr W last updated on 29/May/25

$${let}'{s}\:{construct}\:{three}\:{concentric}\: \\ $$$${circles}\:{with}\:{center}\:{at}\:\boldsymbol{{C}}\:{and}\:{radii} \\ $$$$\sqrt{\mathrm{2}},\:\mathrm{2}\:{and}\:\mathrm{3}\:{respectively}. \\ $$$${the}\:{points}\:\boldsymbol{{F}},\:\boldsymbol{{D}}\:{and}\:\boldsymbol{{E}}\:{must}\:{lie}\:{on} \\ $$$${these}\:{three}\:{circles}\:{respectively}. \\ $$$${each}\:{circle},\:{which}\:{intersects}\:{with} \\ $$$${all}\:{these}\:{three}\:{circles},\:{like}\:{the}\:{green} \\ $$$${one},\:{fulfills}\:{the}\:{condictions}\:{for} \\ $$$${the}\:{circle}\:{that}\:{we}\:{are}\:{searching}\:{for}. \\ $$$${we}\:{can}\:{see}\:{there}\:{are}\:{infinite}\:{such} \\ $$$${circles}\:{which}\:{intersect}\:{the}\:{three} \\ $$$${concenteric}\:{circles}\:{with}\:{radii}\:\sqrt{\mathrm{2}},\:\mathrm{2} \\ $$$${and}\:\mathrm{3}.\:{we}\:{can}\:{find}\:{the}\:{smallest} \\ $$$${one}\:{among}\:{them},\:{such}\:{as}\:{the}\:{red} \\ $$$${one},\:{which}\:{has}\:{the}\:{radius}\:\frac{\mathrm{3}−\sqrt{\mathrm{2}}}{\mathrm{2}}. \\ $$$${but}\:{there}\:{doesn}'{t}\:{exist}\:{the}\:{largest} \\ $$$${one}.\:{therefore}\:{the}\:{possible}\:{values} \\ $$$${for}\:{R}\:{are}\:{in}\:{the}\:{range}\:\left[\frac{\mathrm{3}−\sqrt{\mathrm{2}}}{\mathrm{2}},\:\infty\right). \\ $$
Commented by behi834171 last updated on 29/May/25

$${thank}\:{you}\:{very}\:{much}\:{dear}\:{master}\:{for} \\ $$$${your}\:{time}. \\ $$$${the}\:{same}\:{answer},\:{if}\::\:\boldsymbol{{C}}\:\:{lies}\:{on}\:{the}\:{circle}\:, \\ $$$${or}\:{not}? \\ $$
Commented by mr W last updated on 29/May/25

$${if}\:{C}\:{should}\:{lie}\:{on}\:{the}\:{circle},\:{we} \\ $$$${have}\:{a}\:{different}\:{minimum}\:{circle} \\ $$$${with}\:{R}_{{min}} =\frac{\mathrm{3}}{\mathrm{2}},\:{but}\:{there}\:{still}\:{doesn}'{t} \\ $$$${exist}\:{the}\:{maximum}\:{circle}. \\ $$
Commented by mr W last updated on 29/May/25
