Menu Close

Question-221268




Question Number 221268 by behi834171 last updated on 29/May/25
Commented by behi834171 last updated on 29/May/25
CF=(√2)  ,  CD=2   ,    CE=3  possible value(s) for:R=?  R=radius.   A=center
$$\boldsymbol{{CF}}=\sqrt{\mathrm{2}}\:\:,\:\:\boldsymbol{{CD}}=\mathrm{2}\:\:\:,\:\:\:\:\boldsymbol{{CE}}=\mathrm{3} \\ $$$$\boldsymbol{{possible}}\:\boldsymbol{{value}}\left(\boldsymbol{{s}}\right)\:\boldsymbol{{for}}:\boldsymbol{{R}}=? \\ $$$$\boldsymbol{{R}}=\boldsymbol{{radius}}.\:\:\:\boldsymbol{{A}}=\boldsymbol{{center}} \\ $$
Answered by mr W last updated on 29/May/25
Commented by mr W last updated on 29/May/25
let′s construct three concentric   circles with center at C and radii  (√2), 2 and 3 respectively.  the points F, D and E must lie on  these three circles respectively.  each circle, which intersects with  all these three circles, like the green  one, fulfills the condictions for  the circle that we are searching for.  we can see there are infinite such  circles which intersect the three  concenteric circles with radii (√2), 2  and 3. we can find the smallest  one among them, such as the red  one, which has the radius ((3−(√2))/2).  but there doesn′t exist the largest  one. therefore the possible values  for R are in the range [((3−(√2))/2), ∞).
$${let}'{s}\:{construct}\:{three}\:{concentric}\: \\ $$$${circles}\:{with}\:{center}\:{at}\:\boldsymbol{{C}}\:{and}\:{radii} \\ $$$$\sqrt{\mathrm{2}},\:\mathrm{2}\:{and}\:\mathrm{3}\:{respectively}. \\ $$$${the}\:{points}\:\boldsymbol{{F}},\:\boldsymbol{{D}}\:{and}\:\boldsymbol{{E}}\:{must}\:{lie}\:{on} \\ $$$${these}\:{three}\:{circles}\:{respectively}. \\ $$$${each}\:{circle},\:{which}\:{intersects}\:{with} \\ $$$${all}\:{these}\:{three}\:{circles},\:{like}\:{the}\:{green} \\ $$$${one},\:{fulfills}\:{the}\:{condictions}\:{for} \\ $$$${the}\:{circle}\:{that}\:{we}\:{are}\:{searching}\:{for}. \\ $$$${we}\:{can}\:{see}\:{there}\:{are}\:{infinite}\:{such} \\ $$$${circles}\:{which}\:{intersect}\:{the}\:{three} \\ $$$${concenteric}\:{circles}\:{with}\:{radii}\:\sqrt{\mathrm{2}},\:\mathrm{2} \\ $$$${and}\:\mathrm{3}.\:{we}\:{can}\:{find}\:{the}\:{smallest} \\ $$$${one}\:{among}\:{them},\:{such}\:{as}\:{the}\:{red} \\ $$$${one},\:{which}\:{has}\:{the}\:{radius}\:\frac{\mathrm{3}−\sqrt{\mathrm{2}}}{\mathrm{2}}. \\ $$$${but}\:{there}\:{doesn}'{t}\:{exist}\:{the}\:{largest} \\ $$$${one}.\:{therefore}\:{the}\:{possible}\:{values} \\ $$$${for}\:{R}\:{are}\:{in}\:{the}\:{range}\:\left[\frac{\mathrm{3}−\sqrt{\mathrm{2}}}{\mathrm{2}},\:\infty\right). \\ $$
Commented by behi834171 last updated on 29/May/25
thank you very much dear master for  your time.  the same answer, if : C  lies on the circle ,  or not?
$${thank}\:{you}\:{very}\:{much}\:{dear}\:{master}\:{for} \\ $$$${your}\:{time}. \\ $$$${the}\:{same}\:{answer},\:{if}\::\:\boldsymbol{{C}}\:\:{lies}\:{on}\:{the}\:{circle}\:, \\ $$$${or}\:{not}? \\ $$
Commented by mr W last updated on 29/May/25
if C should lie on the circle, we  have a different minimum circle  with R_(min) =(3/2), but there still doesn′t  exist the maximum circle.
$${if}\:{C}\:{should}\:{lie}\:{on}\:{the}\:{circle},\:{we} \\ $$$${have}\:{a}\:{different}\:{minimum}\:{circle} \\ $$$${with}\:{R}_{{min}} =\frac{\mathrm{3}}{\mathrm{2}},\:{but}\:{there}\:{still}\:{doesn}'{t} \\ $$$${exist}\:{the}\:{maximum}\:{circle}. \\ $$
Commented by mr W last updated on 29/May/25

Leave a Reply

Your email address will not be published. Required fields are marked *