Menu Close

if-function-z-is-analytic-within-and-on-a-simple-closed-curve-C-and-z-0-is-a-point-within-C-using-cauchy-s-integral-formula-sin-z-2-cos-z-2-x-1-x-2-dz-




Question Number 221315 by klipto last updated on 30/May/25
if function z is analytic within and on a simple  closed curve C,−and z_0  is a point within C  using cauchy′s integral formula  ∮((sin𝛑z^2 +cos𝛑z^2 )/((x−1)(x−2)))dz
$$\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{function}}\:\boldsymbol{\mathrm{z}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{analytic}}\:\boldsymbol{\mathrm{within}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{on}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{simple}} \\ $$$$\boldsymbol{\mathrm{closed}}\:\boldsymbol{\mathrm{curve}}\:\boldsymbol{\mathrm{C}},−\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{z}}_{\mathrm{0}} \:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{point}}\:\boldsymbol{\mathrm{within}}\:\boldsymbol{\mathrm{C}} \\ $$$$\boldsymbol{\mathrm{using}}\:\boldsymbol{\mathrm{cauchy}}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{integral}}\:\boldsymbol{\mathrm{formula}} \\ $$$$\oint\frac{\boldsymbol{\mathrm{sin}\pi\mathrm{z}}^{\mathrm{2}} +\boldsymbol{\mathrm{cos}\pi\mathrm{z}}^{\mathrm{2}} }{\left(\boldsymbol{\mathrm{x}}−\mathrm{1}\right)\left(\boldsymbol{\mathrm{x}}−\mathrm{2}\right)}\boldsymbol{\mathrm{dz}} \\ $$
Commented by MathematicalUser2357 last updated on 30/May/25
But which region?

Leave a Reply

Your email address will not be published. Required fields are marked *