Menu Close

Given-real-numbers-a-b-c-gt-0-such-that-a-b-c-a-3-b-3-c-3-Prove-a-3-a-4-b-c-b-3-b-4-c-a-c-3-c-4-a-b-1-




Question Number 221352 by Nicholas666 last updated on 31/May/25
      Given real numbers a,b,c > 0 ,    such that a + b + c = a^3  + b^3  + c^3  ,   Prove ; (a^3 /(a^4  + b + c)) + (b^3 /(b^4  + c + a)) + (c^3 /(c^4  +  a + b)) ≤ 1
$$ \\ $$$$\:\:\:\:\mathrm{Given}\:\mathrm{real}\:\mathrm{numbers}\:{a},{b},{c}\:>\:\mathrm{0}\:, \\ $$$$\:\:\mathrm{such}\:\mathrm{that}\:{a}\:+\:{b}\:+\:{c}\:=\:{a}^{\mathrm{3}} \:+\:{b}^{\mathrm{3}} \:+\:{c}^{\mathrm{3}} \:, \\ $$$$\:\mathrm{Prove}\:;\:\frac{{a}^{\mathrm{3}} }{{a}^{\mathrm{4}} \:+\:{b}\:+\:{c}}\:+\:\frac{{b}^{\mathrm{3}} }{{b}^{\mathrm{4}} \:+\:{c}\:+\:{a}}\:+\:\frac{{c}^{\mathrm{3}} }{{c}^{\mathrm{4}} \:+\:\:{a}\:+\:{b}}\:\leqslant\:\mathrm{1} \\ $$$$\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *