Menu Close

0-J-1-t-Y-t-sin-t-dt-0-J-t-Y-1-t-sin-t-dt-J-t-is-th-Bessel-function-first-Kind-Y-t-is-th-Bessel-function-second-Kind-sin-t-is-sine-function-




Question Number 221391 by SdC355 last updated on 02/Jun/25
∫_0 ^( ∞) J_ν ^((1)) (t)Y_ν (t)sin(t)dt−∫_0 ^( ∞) J_ν (t)Y_ν ^((1)) (t)sin(t)dt=??  J_ν (t) is ν th Bessel function first Kind  Y_ν (t) is ν th Bessel function second Kind  sin(t) is sine function
$$\int_{\mathrm{0}} ^{\:\infty} {J}_{\nu} ^{\left(\mathrm{1}\right)} \left({t}\right){Y}_{\nu} \left({t}\right)\mathrm{sin}\left({t}\right)\mathrm{d}{t}−\int_{\mathrm{0}} ^{\:\infty} {J}_{\nu} \left({t}\right){Y}_{\nu} ^{\left(\mathrm{1}\right)} \left({t}\right)\mathrm{sin}\left({t}\right)\mathrm{d}{t}=?? \\ $$$${J}_{\nu} \left({t}\right)\:\mathrm{is}\:\nu\:\mathrm{th}\:\mathrm{Bessel}\:\mathrm{function}\:\mathrm{first}\:\mathrm{Kind} \\ $$$${Y}_{\nu} \left({t}\right)\:\mathrm{is}\:\nu\:\mathrm{th}\:\mathrm{Bessel}\:\mathrm{function}\:\mathrm{second}\:\mathrm{Kind} \\ $$$$\mathrm{sin}\left({t}\right)\:\mathrm{is}\:\mathrm{sine}\:\mathrm{function} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *