Menu Close

g-R-R-g-C-at-R-space-evauate-0-0-y-g-x-2-y-2-dxdy-when-0-pi-2-z-2-g-z-2-dz-pi-2-




Question Number 221435 by wewji12 last updated on 05/Jun/25
g;R→R , g∈C^ω  at R space   evauate   −∫_0 ^∞ ∫_0 ^∞  y∙g(x^2 +y^2 )dxdy  when  ∫_0 ^(π/2)  z^2 g(z^2 )dz=(π/2)
$$\mathrm{g};\mathbb{R}\rightarrow\mathbb{R}\:,\:\mathrm{g}\in\mathcal{C}^{\omega} \:\mathrm{at}\:\mathbb{R}\:\mathrm{space} \\ $$$$\:\mathrm{evauate}\: \\ $$$$−\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \:{y}\centerdot\mathrm{g}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)\mathrm{d}{x}\mathrm{d}{y} \\ $$$$\mathrm{when}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{z}^{\mathrm{2}} \mathrm{g}\left({z}^{\mathrm{2}} \right)\mathrm{d}{z}=\frac{\pi}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *