Menu Close

Find-x-if-x-4-4-x-4-x-x-4-x-R-




Question Number 221504 by ajfour last updated on 07/Jun/25
Find x if    (x^4 /4^x )=(4^x /x^4 )  .   x∈R
$${Find}\:{x}\:{if}\:\:\:\:\frac{{x}^{\mathrm{4}} }{\mathrm{4}^{{x}} }=\frac{\mathrm{4}^{{x}} }{{x}^{\mathrm{4}} }\:\:.\:\:\:{x}\in\mathbb{R} \\ $$
Answered by mr W last updated on 07/Jun/25
(x^4 /4^x )=(4^x /x^4 )  ⇒(x^4 /4^x )=1     (−1 rejected)  ⇒4^(x/4) =±x  ⇒e^((xln 4)/4) =±x  ⇒xe^(−((xln 4)/4)) =±1  ⇒(−((xln 4)/4))e^(−((xln 4)/4)) =±((ln 4)/4)  ⇒−((xln 4)/4)=W(±((ln 4)/4))  ⇒x=−(4/(ln 4))W(±((ln 4)/4))= { ((−0.766664696)),(2),(4) :}
$$\frac{{x}^{\mathrm{4}} }{\mathrm{4}^{{x}} }=\frac{\mathrm{4}^{{x}} }{{x}^{\mathrm{4}} } \\ $$$$\Rightarrow\frac{{x}^{\mathrm{4}} }{\mathrm{4}^{{x}} }=\mathrm{1}\:\:\:\:\:\left(−\mathrm{1}\:{rejected}\right) \\ $$$$\Rightarrow\mathrm{4}^{\frac{{x}}{\mathrm{4}}} =\pm{x} \\ $$$$\Rightarrow{e}^{\frac{{x}\mathrm{ln}\:\mathrm{4}}{\mathrm{4}}} =\pm{x} \\ $$$$\Rightarrow{xe}^{−\frac{{x}\mathrm{ln}\:\mathrm{4}}{\mathrm{4}}} =\pm\mathrm{1} \\ $$$$\Rightarrow\left(−\frac{{x}\mathrm{ln}\:\mathrm{4}}{\mathrm{4}}\right){e}^{−\frac{{x}\mathrm{ln}\:\mathrm{4}}{\mathrm{4}}} =\pm\frac{\mathrm{ln}\:\mathrm{4}}{\mathrm{4}} \\ $$$$\Rightarrow−\frac{{x}\mathrm{ln}\:\mathrm{4}}{\mathrm{4}}={W}\left(\pm\frac{\mathrm{ln}\:\mathrm{4}}{\mathrm{4}}\right) \\ $$$$\Rightarrow{x}=−\frac{\mathrm{4}}{\mathrm{ln}\:\mathrm{4}}{W}\left(\pm\frac{\mathrm{ln}\:\mathrm{4}}{\mathrm{4}}\right)=\begin{cases}{−\mathrm{0}.\mathrm{766664696}}\\{\mathrm{2}}\\{\mathrm{4}}\end{cases} \\ $$
Commented by ajfour last updated on 07/Jun/25
thank you sir. Correct i had seen on grapher.
$${thank}\:{you}\:{sir}.\:{Correct}\:{i}\:{had}\:{seen}\:{on}\:{grapher}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *