Menu Close

Solve-differantial-Equation-d-dt-dy-t-dt-ty-t-0-




Question Number 221498 by wewji12 last updated on 07/Jun/25
Solve differantial Equation  ((d  )/dt)[((dy(t))/dt)]+ty(t)=0
$$\mathrm{Solve}\:\mathrm{differantial}\:\mathrm{Equation} \\ $$$$\frac{{d}\:\:}{{dt}}\left[\frac{{dy}\left({t}\right)}{{dt}}\right]+{ty}\left({t}\right)=\mathrm{0} \\ $$
Answered by MrGaster last updated on 07/Jun/25
y(t)=C_1 Σ_(m=0) ^∞ (((−1)^m t^(3m) )/(3^m m!Π_(j=1) ^m (3j−1)))+C_2 Σ_(m=0) ^∞ (((−1)^m t^(3m+1) )/(3^m m!Π_(j=1) ^m (3j+1)))  Π_(j=1) ^0 ≡1
$${y}\left({t}\right)={C}_{\mathrm{1}} \underset{{m}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{m}} {t}^{\mathrm{3}{m}} }{\mathrm{3}^{{m}} {m}!\underset{{j}=\mathrm{1}} {\overset{{m}} {\prod}}\left(\mathrm{3}{j}−\mathrm{1}\right)}+{C}_{\mathrm{2}} \underset{{m}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{m}} {t}^{\mathrm{3}{m}+\mathrm{1}} }{\mathrm{3}^{{m}} {m}!\underset{{j}=\mathrm{1}} {\overset{{m}} {\prod}}\left(\mathrm{3}{j}+\mathrm{1}\right)} \\ $$$$\underset{{j}=\mathrm{1}} {\overset{\mathrm{0}} {\prod}}\equiv\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *