Menu Close

solve-for-x-a-a-x-a-a-x-2x-it-s-possible-to-solve-for-a-but-x-seems-impossible-to-me-




Question Number 221501 by Jyrgen last updated on 07/Jun/25
solve for x:  (√(a−(√(a+x))))+(√(a+(√(a−x))))=2x  it′s possible to solve for a but x seems  impossible to me
$${solve}\:{for}\:\mathrm{x}: \\ $$$$\sqrt{\mathrm{a}−\sqrt{\mathrm{a}+\mathrm{x}}}+\sqrt{\mathrm{a}+\sqrt{\mathrm{a}−\mathrm{x}}}=\mathrm{2x} \\ $$$${it}'{s}\:{possible}\:{to}\:{solve}\:{for}\:\mathrm{a}\:{but}\:\mathrm{x}\:{seems} \\ $$$${impossible}\:{to}\:{me} \\ $$
Answered by ajfour last updated on 07/Jun/25
x=(Lycon Trix − Alphaprime)^a
$${x}=\left({Lycon}\:{Trix}\:−\:{Alphaprime}\right)^{{a}} \\ $$
Commented by mr W last updated on 07/Jun/25
is this that famous equation which  you have solved?
$${is}\:{this}\:{that}\:{famous}\:{equation}\:{which} \\ $$$${you}\:{have}\:{solved}? \\ $$
Commented by ajfour last updated on 07/Jun/25
yeah this was it.
$${yeah}\:{this}\:{was}\:{it}. \\ $$
Commented by Tawa11 last updated on 07/Jun/25
Sirs, are you joking, I don′t understand  anything. Is the answer exist??  I am asking to learn.
$$\mathrm{Sirs},\:\mathrm{are}\:\mathrm{you}\:\mathrm{joking},\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{understand} \\ $$$$\mathrm{anything}.\:\mathrm{Is}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{exist}?? \\ $$$$\mathrm{I}\:\mathrm{am}\:\mathrm{asking}\:\mathrm{to}\:\mathrm{learn}. \\ $$
Commented by Jyrgen last updated on 07/Jun/25
so you found the solution? is it here on  the forum?
$${so}\:{you}\:{found}\:{the}\:{solution}?\:{is}\:{it}\:{here}\:{on} \\ $$$${the}\:{forum}? \\ $$
Commented by mr W last updated on 07/Jun/25
ajfour sir and MJS sir have jointly  solved this problem. it is said that  prize money was offered for the  solution of this problem.   while ajfour sir is still active in   this forum, MJS sir has been   missed here for a long time. i wish   him all the best.  the result of their solution is:
$${ajfour}\:{sir}\:{and}\:{MJS}\:{sir}\:{have}\:{jointly} \\ $$$${solved}\:{this}\:{problem}.\:{it}\:{is}\:{said}\:{that} \\ $$$${prize}\:{money}\:{was}\:{offered}\:{for}\:{the} \\ $$$${solution}\:{of}\:{this}\:{problem}.\: \\ $$$${while}\:{ajfour}\:{sir}\:{is}\:{still}\:{active}\:{in}\: \\ $$$${this}\:{forum},\:{MJS}\:{sir}\:{has}\:{been}\: \\ $$$${missed}\:{here}\:{for}\:{a}\:{long}\:{time}.\:{i}\:{wish}\: \\ $$$${him}\:{all}\:{the}\:{best}. \\ $$$${the}\:{result}\:{of}\:{their}\:{solution}\:{is}: \\ $$
Commented by mr W last updated on 07/Jun/25
Commented by Tawa11 last updated on 07/Jun/25
Wow.  Great.  Hope they have collected the money
$$\mathrm{Wow}. \\ $$$$\mathrm{Great}. \\ $$$$\mathrm{Hope}\:\mathrm{they}\:\mathrm{have}\:\mathrm{collected}\:\mathrm{the}\:\mathrm{money} \\ $$
Commented by Tawa11 last updated on 07/Jun/25
sir mrW and sir Aleks solved a problem too  sometimes ago. Do you remember sir.  It leaads to integration or so.  Do you still remember the Question number sir?
$$\mathrm{sir}\:\mathrm{mrW}\:\mathrm{and}\:\mathrm{sir}\:\mathrm{Aleks}\:\mathrm{solved}\:\mathrm{a}\:\mathrm{problem}\:\mathrm{too} \\ $$$$\mathrm{sometimes}\:\mathrm{ago}.\:\mathrm{Do}\:\mathrm{you}\:\mathrm{remember}\:\mathrm{sir}. \\ $$$$\mathrm{It}\:\mathrm{leaads}\:\mathrm{to}\:\mathrm{integration}\:\mathrm{or}\:\mathrm{so}. \\ $$$$\mathrm{Do}\:\mathrm{you}\:\mathrm{still}\:\mathrm{remember}\:\mathrm{the}\:\mathrm{Question}\:\mathrm{number}\:\mathrm{sir}? \\ $$
Commented by mr W last updated on 07/Jun/25
you seem not to have known that  ajfour sir has solved this famous  problem. this is strange! actually i  can remember that you also have  congratulated them at that time.
$${you}\:{seem}\:{not}\:{to}\:{have}\:{known}\:{that} \\ $$$${ajfour}\:{sir}\:{has}\:{solved}\:{this}\:{famous} \\ $$$${problem}.\:{this}\:{is}\:{strange}!\:{actually}\:{i} \\ $$$${can}\:{remember}\:{that}\:{you}\:{also}\:{have} \\ $$$${congratulated}\:{them}\:{at}\:{that}\:{time}. \\ $$
Commented by Tawa11 last updated on 07/Jun/25
I think I remember that time sir.
$$\mathrm{I}\:\mathrm{think}\:\mathrm{I}\:\mathrm{remember}\:\mathrm{that}\:\mathrm{time}\:\mathrm{sir}. \\ $$
Commented by Tawa11 last updated on 07/Jun/25
Do you remember your own solution  and sir aleks question number sir?
$$\mathrm{Do}\:\mathrm{you}\:\mathrm{remember}\:\mathrm{your}\:\mathrm{own}\:\mathrm{solution} \\ $$$$\mathrm{and}\:\mathrm{sir}\:\mathrm{aleks}\:\mathrm{question}\:\mathrm{number}\:\mathrm{sir}? \\ $$
Commented by mr W last updated on 07/Jun/25
i solved a lot of questions in the  forum. i don′t know which question  you mean.
$${i}\:{solved}\:{a}\:{lot}\:{of}\:{questions}\:{in}\:{the} \\ $$$${forum}.\:{i}\:{don}'{t}\:{know}\:{which}\:{question} \\ $$$${you}\:{mean}. \\ $$
Commented by Rasheed.Sindhi last updated on 07/Jun/25
′Frix′ is new identity of mjs sir,  I think.  Sir mrW , Please write a questionID  in which sir ajfour and sir mjs  received congratulation on solving  the above question, if you know.
$$'{Frix}'\:{is}\:{new}\:{identity}\:{of}\:{mjs}\:{sir}, \\ $$$${I}\:{think}. \\ $$$${Sir}\:{mrW}\:,\:{Please}\:{write}\:{a}\:{questionID} \\ $$$${in}\:{which}\:{sir}\:{ajfour}\:{and}\:{sir}\:{mjs} \\ $$$${received}\:{congratulation}\:{on}\:{solving} \\ $$$${the}\:{above}\:{question},\:{if}\:{you}\:{know}. \\ $$
Commented by ajfour last updated on 07/Jun/25
They gave us not one penny. invited  us on slack.com and later said   project was with nasa and they closed it  and that merit of the solution   needed to be evaluated.   Lycon Trix  Alphaprime  Siddharth  above named guys belonged to those  seeking the solution.
$${They}\:{gave}\:{us}\:{not}\:{one}\:{penny}.\:{invited} \\ $$$${us}\:{on}\:{slack}.{com}\:{and}\:{later}\:{said}\: \\ $$$${project}\:{was}\:{with}\:{nasa}\:{and}\:{they}\:{closed}\:{it} \\ $$$${and}\:{that}\:{merit}\:{of}\:{the}\:{solution} \\ $$$$\:{needed}\:{to}\:{be}\:{evaluated}.\: \\ $$$${Lycon}\:{Trix} \\ $$$${Alphaprime} \\ $$$${Siddharth} \\ $$$${above}\:{named}\:{guys}\:{belonged}\:{to}\:{those} \\ $$$${seeking}\:{the}\:{solution}.\: \\ $$
Commented by Tawa11 last updated on 07/Jun/25
This life is full of cheating.
$$\mathrm{This}\:\mathrm{life}\:\mathrm{is}\:\mathrm{full}\:\mathrm{of}\:\mathrm{cheating}. \\ $$
Commented by ajfour last updated on 07/Jun/25
Commented by ajfour last updated on 07/Jun/25
Q. 60723
$${Q}.\:\mathrm{60723} \\ $$
Commented by Tawa11 last updated on 07/Jun/25
Sir ajfour.  They stole your result.  Probably they have claim the money.  Cheater.
$$\mathrm{Sir}\:\mathrm{ajfour}. \\ $$$$\mathrm{They}\:\mathrm{stole}\:\mathrm{your}\:\mathrm{result}. \\ $$$$\mathrm{Probably}\:\mathrm{they}\:\mathrm{have}\:\mathrm{claim}\:\mathrm{the}\:\mathrm{money}. \\ $$$$\mathrm{Cheater}. \\ $$
Commented by Tawa11 last updated on 07/Jun/25
Ajfour, have you sent the answer?  Can I email you to share me.  But if you have not share the result.  No need to share with me.
$$\mathrm{Ajfour},\:\mathrm{have}\:\mathrm{you}\:\mathrm{sent}\:\mathrm{the}\:\mathrm{answer}? \\ $$$$\mathrm{Can}\:\mathrm{I}\:\mathrm{email}\:\mathrm{you}\:\mathrm{to}\:\mathrm{share}\:\mathrm{me}. \\ $$$$\mathrm{But}\:\mathrm{if}\:\mathrm{you}\:\mathrm{have}\:\mathrm{not}\:\mathrm{share}\:\mathrm{the}\:\mathrm{result}. \\ $$$$\mathrm{No}\:\mathrm{need}\:\mathrm{to}\:\mathrm{share}\:\mathrm{with}\:\mathrm{me}. \\ $$
Commented by Frix last updated on 08/Jun/25
I′m only myself. Sorry Sirs and Ladies.
$$\mathrm{I}'\mathrm{m}\:\mathrm{only}\:\mathrm{myself}.\:\mathrm{Sorry}\:\mathrm{Sirs}\:\mathrm{and}\:\mathrm{Ladies}. \\ $$
Commented by mr W last updated on 08/Jun/25
@Frix sir:   thanks for the clarification!
$$@{Frix}\:{sir}:\: \\ $$$${thanks}\:{for}\:{the}\:{clarification}! \\ $$
Commented by mr W last updated on 08/Jun/25
@Rasheed sir:  that′s the Q61490 where MJS sir  also shared their complete  solution.
$$@{Rasheed}\:{sir}: \\ $$$${that}'{s}\:{the}\:{Q}\mathrm{61490}\:{where}\:{MJS}\:{sir} \\ $$$${also}\:{shared}\:{their}\:{complete} \\ $$$${solution}. \\ $$
Commented by Ghisom last updated on 08/Jun/25
great!
$$\mathrm{great}! \\ $$
Commented by Rasheed.Sindhi last updated on 09/Jun/25
Thanks sir mrW!
$$\mathbb{T}\boldsymbol{\mathrm{han}}\Bbbk\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{sir}}\:\boldsymbol{\mathrm{mr}}\mathbb{W}! \\ $$
Commented by Tawa11 last updated on 12/Jun/25
Commented by Tawa11 last updated on 12/Jun/25
Ajfour sir.  Have you completed this work sir?
$$\mathrm{Ajfour}\:\mathrm{sir}. \\ $$$$\mathrm{Have}\:\mathrm{you}\:\mathrm{completed}\:\mathrm{this}\:\mathrm{work}\:\mathrm{sir}? \\ $$
Answered by Ghisom last updated on 08/Jun/25
looking at the given solution I think I know  how Aifour & MJS got there    (√(a−(√(a+x))))+(√(a+(√(a−x))))=2x  staying in R ⇒ (√(a+x))≥(√(a−x))  let (√(a+x))=α+β∧(√(a−x))=α−β  ⇔  α=((√(a+x))/2)+((√(a−x))/2)∧β=((√(a+x))/2)−((√(a−x))/2)  ⇒  x=2αβ∧a=α^2 +β^2     inserting we get  (√(a−α−β))+(√(a+α−β))=4αβ  squaring & transforming  (√(a−α−β))(√(a+α−β))=8α^2 β^2 +β−a  squaring & transforming  α^2 (64α^2 β^4 +16β^3 −16aβ^2 +1)=0  α≠0 [or else x=a=0]  64α^2 β^4 +16β^3 −16aβ^2 +1=0  using a=α^2 +β^2  ⇔ α^2 =a−β^2   64β^6 −64aβ^4 −16β^3 +16aβ^2 −1=0  64β^6 −16β^3 −1=64aβ^4 +16aβ^2   let β=(γ/2)  γ^6 −2γ^3 −1=4a(γ^4 −γ^2 )  β>0 ⇒ γ>0  γ^3 −(1/γ^3 )−2=4a(γ−(1/γ))  γ^3 −(1/γ^3 )=(γ−(1/γ))^3 +3(γ−(1/γ))  let γ−(1/γ)=δ  δ^3 +3δ−2=4aδ  δ^3 +(3−4a)δ−2=0  this can be solved using the Trigonometric  Solution Method. but it gives 3 solutions,  how to know which is the right one?  also for a≤≈1.5 there′s no solution to the  original equation although we seem to get  one...    [my δ is the same as Aifour′s & MJS′s r]
$$\mathrm{looking}\:\mathrm{at}\:\mathrm{the}\:\mathrm{given}\:\mathrm{solution}\:\mathrm{I}\:\mathrm{think}\:\mathrm{I}\:\mathrm{know} \\ $$$$\mathrm{how}\:\mathrm{Aifour}\:\&\:\mathrm{MJS}\:\mathrm{got}\:\mathrm{there} \\ $$$$ \\ $$$$\sqrt{{a}−\sqrt{{a}+{x}}}+\sqrt{{a}+\sqrt{{a}−{x}}}=\mathrm{2}{x} \\ $$$$\mathrm{staying}\:\mathrm{in}\:\mathbb{R}\:\Rightarrow\:\sqrt{{a}+{x}}\geqslant\sqrt{{a}−{x}} \\ $$$$\mathrm{let}\:\sqrt{{a}+{x}}=\alpha+\beta\wedge\sqrt{{a}−{x}}=\alpha−\beta \\ $$$$\Leftrightarrow \\ $$$$\alpha=\frac{\sqrt{{a}+{x}}}{\mathrm{2}}+\frac{\sqrt{{a}−{x}}}{\mathrm{2}}\wedge\beta=\frac{\sqrt{{a}+{x}}}{\mathrm{2}}−\frac{\sqrt{{a}−{x}}}{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$${x}=\mathrm{2}\alpha\beta\wedge{a}=\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{inserting}\:\mathrm{we}\:\mathrm{get} \\ $$$$\sqrt{{a}−\alpha−\beta}+\sqrt{{a}+\alpha−\beta}=\mathrm{4}\alpha\beta \\ $$$$\mathrm{squaring}\:\&\:\mathrm{transforming} \\ $$$$\sqrt{{a}−\alpha−\beta}\sqrt{{a}+\alpha−\beta}=\mathrm{8}\alpha^{\mathrm{2}} \beta^{\mathrm{2}} +\beta−{a} \\ $$$$\mathrm{squaring}\:\&\:\mathrm{transforming} \\ $$$$\alpha^{\mathrm{2}} \left(\mathrm{64}\alpha^{\mathrm{2}} \beta^{\mathrm{4}} +\mathrm{16}\beta^{\mathrm{3}} −\mathrm{16}{a}\beta^{\mathrm{2}} +\mathrm{1}\right)=\mathrm{0} \\ $$$$\alpha\neq\mathrm{0}\:\left[\mathrm{or}\:\mathrm{else}\:{x}={a}=\mathrm{0}\right] \\ $$$$\mathrm{64}\alpha^{\mathrm{2}} \beta^{\mathrm{4}} +\mathrm{16}\beta^{\mathrm{3}} −\mathrm{16}{a}\beta^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{using}\:{a}=\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} \:\Leftrightarrow\:\alpha^{\mathrm{2}} ={a}−\beta^{\mathrm{2}} \\ $$$$\mathrm{64}\beta^{\mathrm{6}} −\mathrm{64}{a}\beta^{\mathrm{4}} −\mathrm{16}\beta^{\mathrm{3}} +\mathrm{16}{a}\beta^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{64}\beta^{\mathrm{6}} −\mathrm{16}\beta^{\mathrm{3}} −\mathrm{1}=\mathrm{64}{a}\beta^{\mathrm{4}} +\mathrm{16}{a}\beta^{\mathrm{2}} \\ $$$$\mathrm{let}\:\beta=\frac{\gamma}{\mathrm{2}} \\ $$$$\gamma^{\mathrm{6}} −\mathrm{2}\gamma^{\mathrm{3}} −\mathrm{1}=\mathrm{4}{a}\left(\gamma^{\mathrm{4}} −\gamma^{\mathrm{2}} \right) \\ $$$$\beta>\mathrm{0}\:\Rightarrow\:\gamma>\mathrm{0} \\ $$$$\gamma^{\mathrm{3}} −\frac{\mathrm{1}}{\gamma^{\mathrm{3}} }−\mathrm{2}=\mathrm{4}{a}\left(\gamma−\frac{\mathrm{1}}{\gamma}\right) \\ $$$$\gamma^{\mathrm{3}} −\frac{\mathrm{1}}{\gamma^{\mathrm{3}} }=\left(\gamma−\frac{\mathrm{1}}{\gamma}\right)^{\mathrm{3}} +\mathrm{3}\left(\gamma−\frac{\mathrm{1}}{\gamma}\right) \\ $$$$\mathrm{let}\:\gamma−\frac{\mathrm{1}}{\gamma}=\delta \\ $$$$\delta^{\mathrm{3}} +\mathrm{3}\delta−\mathrm{2}=\mathrm{4}{a}\delta \\ $$$$\delta^{\mathrm{3}} +\left(\mathrm{3}−\mathrm{4}{a}\right)\delta−\mathrm{2}=\mathrm{0} \\ $$$$\mathrm{this}\:\mathrm{can}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{using}\:\mathrm{the}\:\mathrm{Trigonometric} \\ $$$$\mathrm{Solution}\:\mathrm{Method}.\:\mathrm{but}\:\mathrm{it}\:\mathrm{gives}\:\mathrm{3}\:\mathrm{solutions}, \\ $$$$\mathrm{how}\:\mathrm{to}\:\mathrm{know}\:\mathrm{which}\:\mathrm{is}\:\mathrm{the}\:\mathrm{right}\:\mathrm{one}? \\ $$$$\mathrm{also}\:\mathrm{for}\:{a}\leqslant\approx\mathrm{1}.\mathrm{5}\:\mathrm{there}'\mathrm{s}\:\mathrm{no}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{original}\:\mathrm{equation}\:\mathrm{although}\:\mathrm{we}\:\mathrm{seem}\:\mathrm{to}\:\mathrm{get} \\ $$$$\mathrm{one}… \\ $$$$ \\ $$$$\left[\mathrm{my}\:\delta\:\mathrm{is}\:\mathrm{the}\:\mathrm{same}\:\mathrm{as}\:\mathrm{Aifour}'\mathrm{s}\:\&\:\mathrm{MJS}'\mathrm{s}\:{r}\right] \\ $$
Answered by Jubr last updated on 12/Jun/25
Commented by Jubr last updated on 12/Jun/25
Please is it correct?
$${Please}\:{is}\:{it}\:{correct}? \\ $$
Commented by Frix last updated on 12/Jun/25
θ is not a parameter but a function of x  ⇒ It′s not solved.
$$\theta\:\mathrm{is}\:\mathrm{not}\:\mathrm{a}\:\mathrm{parameter}\:\mathrm{but}\:\mathrm{a}\:\mathrm{function}\:\mathrm{of}\:{x} \\ $$$$\Rightarrow\:\mathrm{It}'\mathrm{s}\:\mathrm{not}\:\mathrm{solved}. \\ $$
Commented by Tawa11 last updated on 12/Jun/25
Commented by Tawa11 last updated on 12/Jun/25
Ajfour sir.  Did you complete this work?
$$\mathrm{Ajfour}\:\mathrm{sir}. \\ $$$$\mathrm{Did}\:\mathrm{you}\:\mathrm{complete}\:\mathrm{this}\:\mathrm{work}? \\ $$
Commented by Jubr last updated on 13/Jun/25
Commented by Jubr last updated on 13/Jun/25
Commented by Jubr last updated on 13/Jun/25
Commented by Jubr last updated on 13/Jun/25
Please sir. What of this solution.  Is this correct??  Thanks for previous feedback.
$${Please}\:{sir}.\:{What}\:{of}\:{this}\:{solution}. \\ $$$${Is}\:{this}\:{correct}?? \\ $$$${Thanks}\:{for}\:{previous}\:{feedback}. \\ $$
Commented by Ghisom last updated on 13/Jun/25
check 2 things:  1. no solution for a<1.509830340885...       a is a solution of       t^6 −3t^5 +3t^4 −(3/2)t^3 +(1/2)t^2 +(1/8)=0  2. there′s an exact solution for a=2:       x=(√((9/8)+((√2)/2)−((√(13+8(√2)))/8)))≈1.10260832651
$$\mathrm{check}\:\mathrm{2}\:\mathrm{things}: \\ $$$$\mathrm{1}.\:\mathrm{no}\:\mathrm{solution}\:\mathrm{for}\:{a}<\mathrm{1}.\mathrm{509830340885}… \\ $$$$\:\:\:\:\:{a}\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution}\:\mathrm{of} \\ $$$$\:\:\:\:\:{t}^{\mathrm{6}} −\mathrm{3}{t}^{\mathrm{5}} +\mathrm{3}{t}^{\mathrm{4}} −\frac{\mathrm{3}}{\mathrm{2}}{t}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{2}}{t}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{8}}=\mathrm{0} \\ $$$$\mathrm{2}.\:\mathrm{there}'\mathrm{s}\:\mathrm{an}\:\mathrm{exact}\:\mathrm{solution}\:\mathrm{for}\:{a}=\mathrm{2}: \\ $$$$\:\:\:\:\:{x}=\sqrt{\frac{\mathrm{9}}{\mathrm{8}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{13}+\mathrm{8}\sqrt{\mathrm{2}}}}{\mathrm{8}}}\approx\mathrm{1}.\mathrm{10260832651} \\ $$
Commented by Jubr last updated on 13/Jun/25
Thanks sir.
$${Thanks}\:{sir}. \\ $$
Commented by Tawa11 last updated on 13/Jun/25
Sir, please, how can one think of the a_0 .  What is the setup to get    t^6  − 3t^5  + 3t^4  − (3/2)t^3  + (1/2)t^2  + (1/8) =  0
$$\mathrm{Sir},\:\mathrm{please},\:\mathrm{how}\:\mathrm{can}\:\mathrm{one}\:\mathrm{think}\:\mathrm{of}\:\mathrm{the}\:\mathrm{a}_{\mathrm{0}} . \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{setup}\:\mathrm{to}\:\mathrm{get}\:\:\:\:\mathrm{t}^{\mathrm{6}} \:−\:\mathrm{3t}^{\mathrm{5}} \:+\:\mathrm{3t}^{\mathrm{4}} \:−\:\frac{\mathrm{3}}{\mathrm{2}}\mathrm{t}^{\mathrm{3}} \:+\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{t}^{\mathrm{2}} \:+\:\frac{\mathrm{1}}{\mathrm{8}}\:=\:\:\mathrm{0} \\ $$
Commented by Ghisom last updated on 14/Jun/25
you can use software to draw both  f(x)=(√(a−(√(a+x))))+(√(a+(√(a−x))))  g(x)=2x  for some values of a  if a<≈(3/2) the graphs don′t intersect  we must find for which values of a, x  f(x) ∈R  obviously  x≥0  a+x≥0∧a−x≥0 ⇒ −a≤x≤a  but if a<0 ⇒ a−(√(a+x))<0 ⇒ a≥0  ⇒  a≥0∧0≤x≤a  ⇒ a+(√(a−x))≥0  also needed: a−(√(a+x))≥0  a≥(√(a+x))     both sides ≥0 ⇒ we can square  a^2 ≥a+x  a^2 −a≥x  x≤a(a−1)  now we have  a≥0∧x≤a∧x≤a(a−1)       ⇔ a≥0∧0≤x≤min (a, a(a−1))  if x=a  (√(a−(√(a+a))))+(√a)=2a  ⇒ a=0 as only solution ⇒ x=a=0  if x=a(a−1)  a^(1/4) (√((√a)+(√(2−a))))=2a(a−1)  a=0 ⇒ x=a=0  (√((√a)+(√(2−a))))=2a^(3/4) (a−1)  (√a)+(√(2−a))=2a^(3/2) (a−1)  (√(2−a))=2a(√a)(a−1)−(√a)  (√(2−a))=(√a)(4a^3 −8a^2 +4a−1)  2−a=a(4a^3 −8a^2 +4a−1)^2   a^7 −4a^6 +6a^5 −(9/2)a^4 +2a^3 −(1/2)a^2 +(1/8)a−(1/8)=0  (a−1)(a^6 −3a^5 +3a^4 −(3/2)a^3 +(1/2)a^2 +(1/8))=0  a=1 ⇒ x=0 which is a false solution [we  squared!]  a^6 −3a^5 +3a^4 −(3/2)a^3 +(1/2)a^2 +(1/8)=0  ⇒  a≈1.19281015388... which again is false    a=a_0 ≈1.50983034088... ⇒ x≈.769757317372...  it turns out there′s no solution for x if a<a_0
$$\mathrm{you}\:\mathrm{can}\:\mathrm{use}\:\mathrm{software}\:\mathrm{to}\:\mathrm{draw}\:\mathrm{both} \\ $$$${f}\left({x}\right)=\sqrt{{a}−\sqrt{{a}+{x}}}+\sqrt{{a}+\sqrt{{a}−{x}}} \\ $$$${g}\left({x}\right)=\mathrm{2}{x} \\ $$$$\mathrm{for}\:\mathrm{some}\:\mathrm{values}\:\mathrm{of}\:{a} \\ $$$$\mathrm{if}\:{a}<\approx\frac{\mathrm{3}}{\mathrm{2}}\:\mathrm{the}\:\mathrm{graphs}\:\mathrm{don}'\mathrm{t}\:\mathrm{intersect} \\ $$$$\mathrm{we}\:\mathrm{must}\:\mathrm{find}\:\mathrm{for}\:\mathrm{which}\:\mathrm{values}\:\mathrm{of}\:{a},\:{x} \\ $$$${f}\left({x}\right)\:\in\mathbb{R} \\ $$$$\mathrm{obviously} \\ $$$${x}\geqslant\mathrm{0} \\ $$$${a}+{x}\geqslant\mathrm{0}\wedge{a}−{x}\geqslant\mathrm{0}\:\Rightarrow\:−{a}\leqslant{x}\leqslant{a} \\ $$$$\mathrm{but}\:\mathrm{if}\:{a}<\mathrm{0}\:\Rightarrow\:{a}−\sqrt{{a}+{x}}<\mathrm{0}\:\Rightarrow\:{a}\geqslant\mathrm{0} \\ $$$$\Rightarrow \\ $$$${a}\geqslant\mathrm{0}\wedge\mathrm{0}\leqslant{x}\leqslant{a} \\ $$$$\Rightarrow\:{a}+\sqrt{{a}−{x}}\geqslant\mathrm{0} \\ $$$$\mathrm{also}\:\mathrm{needed}:\:{a}−\sqrt{{a}+{x}}\geqslant\mathrm{0} \\ $$$${a}\geqslant\sqrt{{a}+{x}}\:\:\:\:\:\mathrm{both}\:\mathrm{sides}\:\geqslant\mathrm{0}\:\Rightarrow\:\mathrm{we}\:\mathrm{can}\:\mathrm{square} \\ $$$${a}^{\mathrm{2}} \geqslant{a}+{x} \\ $$$${a}^{\mathrm{2}} −{a}\geqslant{x} \\ $$$${x}\leqslant{a}\left({a}−\mathrm{1}\right) \\ $$$$\mathrm{now}\:\mathrm{we}\:\mathrm{have} \\ $$$${a}\geqslant\mathrm{0}\wedge{x}\leqslant{a}\wedge{x}\leqslant{a}\left({a}−\mathrm{1}\right) \\ $$$$\:\:\:\:\:\Leftrightarrow\:{a}\geqslant\mathrm{0}\wedge\mathrm{0}\leqslant{x}\leqslant\mathrm{min}\:\left({a},\:{a}\left({a}−\mathrm{1}\right)\right) \\ $$$$\mathrm{if}\:{x}={a} \\ $$$$\sqrt{{a}−\sqrt{{a}+{a}}}+\sqrt{{a}}=\mathrm{2}{a} \\ $$$$\Rightarrow\:{a}=\mathrm{0}\:\mathrm{as}\:\mathrm{only}\:\mathrm{solution}\:\Rightarrow\:{x}={a}=\mathrm{0} \\ $$$$\mathrm{if}\:{x}={a}\left({a}−\mathrm{1}\right) \\ $$$${a}^{\mathrm{1}/\mathrm{4}} \sqrt{\sqrt{{a}}+\sqrt{\mathrm{2}−{a}}}=\mathrm{2}{a}\left({a}−\mathrm{1}\right) \\ $$$${a}=\mathrm{0}\:\Rightarrow\:{x}={a}=\mathrm{0} \\ $$$$\sqrt{\sqrt{{a}}+\sqrt{\mathrm{2}−{a}}}=\mathrm{2}{a}^{\mathrm{3}/\mathrm{4}} \left({a}−\mathrm{1}\right) \\ $$$$\sqrt{{a}}+\sqrt{\mathrm{2}−{a}}=\mathrm{2}{a}^{\mathrm{3}/\mathrm{2}} \left({a}−\mathrm{1}\right) \\ $$$$\sqrt{\mathrm{2}−{a}}=\mathrm{2}{a}\sqrt{{a}}\left({a}−\mathrm{1}\right)−\sqrt{{a}} \\ $$$$\sqrt{\mathrm{2}−{a}}=\sqrt{{a}}\left(\mathrm{4}{a}^{\mathrm{3}} −\mathrm{8}{a}^{\mathrm{2}} +\mathrm{4}{a}−\mathrm{1}\right) \\ $$$$\mathrm{2}−{a}={a}\left(\mathrm{4}{a}^{\mathrm{3}} −\mathrm{8}{a}^{\mathrm{2}} +\mathrm{4}{a}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$${a}^{\mathrm{7}} −\mathrm{4}{a}^{\mathrm{6}} +\mathrm{6}{a}^{\mathrm{5}} −\frac{\mathrm{9}}{\mathrm{2}}{a}^{\mathrm{4}} +\mathrm{2}{a}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{2}}{a}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{8}}{a}−\frac{\mathrm{1}}{\mathrm{8}}=\mathrm{0} \\ $$$$\left({a}−\mathrm{1}\right)\left({a}^{\mathrm{6}} −\mathrm{3}{a}^{\mathrm{5}} +\mathrm{3}{a}^{\mathrm{4}} −\frac{\mathrm{3}}{\mathrm{2}}{a}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{2}}{a}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{8}}\right)=\mathrm{0} \\ $$$${a}=\mathrm{1}\:\Rightarrow\:{x}=\mathrm{0}\:\mathrm{which}\:\mathrm{is}\:\mathrm{a}\:\mathrm{false}\:\mathrm{solution}\:\left[\mathrm{we}\right. \\ $$$$\left.\mathrm{squared}!\right] \\ $$$${a}^{\mathrm{6}} −\mathrm{3}{a}^{\mathrm{5}} +\mathrm{3}{a}^{\mathrm{4}} −\frac{\mathrm{3}}{\mathrm{2}}{a}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{2}}{a}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{8}}=\mathrm{0} \\ $$$$\Rightarrow \\ $$$${a}\approx\mathrm{1}.\mathrm{19281015388}…\:\mathrm{which}\:\mathrm{again}\:\mathrm{is}\:\mathrm{false} \\ $$$$ \\ $$$${a}={a}_{\mathrm{0}} \approx\mathrm{1}.\mathrm{50983034088}…\:\Rightarrow\:{x}\approx.\mathrm{769757317372}… \\ $$$$\mathrm{it}\:\mathrm{turns}\:\mathrm{out}\:\mathrm{there}'\mathrm{s}\:\mathrm{no}\:\mathrm{solution}\:\mathrm{for}\:{x}\:\mathrm{if}\:{a}<{a}_{\mathrm{0}} \\ $$
Commented by Tawa11 last updated on 14/Jun/25
Wow, I understand now sir.
$$\mathrm{Wow},\:\mathrm{I}\:\mathrm{understand}\:\mathrm{now}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *