Question Number 221583 by MrGaster last updated on 08/Jun/25

Answered by MrGaster last updated on 08/Jun/25

$$=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\mathrm{1}/\mathrm{11}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{\mathrm{9}/\mathrm{11}−\mathrm{1}} \beta\left(\frac{\:\mathrm{1}}{\mathrm{11}},\frac{\mathrm{9}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{9}}{\mathrm{11}}\right)\left(\int_{\mathrm{0}} ^{\mathrm{1}} {s}^{\mathrm{3}/\mathrm{11}−\mathrm{1}} \left(\mathrm{1}−{s}\right)^{\mathrm{5}/\mathrm{11}−\mathrm{1}} \beta\left(\frac{\mathrm{3}}{\mathrm{11}},\frac{\mathrm{5}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{5}}{\mathrm{11}}\right)\int_{\mathrm{0}} ^{\mathrm{1}} {u}^{\mathrm{4}} \left(\mathrm{1}−{u}\right)^{\mathrm{0}} \beta\left(\frac{\mathrm{4}}{\mathrm{11}},\mathrm{1}\right)\Gamma\left(\frac{\mathrm{4}}{\mathrm{11}}\right){du}\:{ds}\:{dt}\right) \\ $$$$=\beta\left(\frac{\:\mathrm{1}}{\mathrm{11}},\frac{\mathrm{9}}{\mathrm{11}}\right)\beta\left(\frac{\mathrm{3}}{\mathrm{11}},\frac{\mathrm{5}}{\mathrm{11}}\right)\beta\left(\frac{\mathrm{4}}{\mathrm{11}},\mathrm{1}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{4}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{5}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{9}}{\mathrm{11}}\right) \\ $$$$\beta\left(\frac{\mathrm{1}}{\mathrm{11}},\frac{\mathrm{9}}{\mathrm{11}}\right)=\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{9}}{\mathrm{11}}\right)}{\Gamma\left(\frac{\mathrm{10}}{\mathrm{11}}\right)},\beta\left(\frac{\mathrm{3}}{\mathrm{11}},\frac{\mathrm{5}}{\mathrm{11}}\right)=\frac{\Gamma\left(\frac{\mathrm{3}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{5}}{\mathrm{11}}\right)}{\Gamma\left(\frac{\mathrm{8}}{\mathrm{11}}\right)},\beta\left(\frac{\mathrm{4}}{\mathrm{11}},\mathrm{1}\right)=\frac{\Gamma\left(\frac{\mathrm{4}}{\mathrm{11}}\right)\Gamma\left(\mathrm{1}\right)}{\Gamma\left(\frac{\mathrm{15}}{\mathrm{11}}\right)} \\ $$$$\Gamma\left(\frac{\mathrm{5}}{\mathrm{11}}\right)=\Gamma\left(\mathrm{1}+\frac{\mathrm{4}}{\mathrm{11}}\right)=\frac{\mathrm{4}}{\mathrm{11}}\Gamma\left(\frac{\mathrm{4}}{\mathrm{11}}\right),\Gamma\left(\mathrm{1}\right)=\mathrm{1} \\ $$$$\beta\left(\frac{\mathrm{4}}{\mathrm{11}},\mathrm{1}\right)=\frac{\Gamma\left(\frac{\mathrm{4}}{\mathrm{11}}\right)}{\frac{\mathrm{4}}{\mathrm{11}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{11}}\right)}=\frac{\mathrm{11}}{\mathrm{4}} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{10}} {\prod}}\Gamma\left(\frac{{k}}{\mathrm{11}}\right)=\frac{\left(\mathrm{2}\pi\right)^{\mathrm{5}} }{\:\sqrt{\mathrm{11}}} \\ $$$$\Gamma\left(\frac{\mathrm{1}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{4}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{5}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{9}}{\mathrm{11}}\right)=\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{11}}\right)\left(\frac{\mathrm{3}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{4}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{5}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{9}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{2}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{6}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{7}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{8}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{10}}{\mathrm{11}}\right)}{\Gamma\left(\frac{\mathrm{2}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{6}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{7}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{8}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{10}}{\mathrm{11}}\right)}=\frac{\frac{\left(\mathrm{2}\pi\right)^{\mathrm{5}} }{\:\sqrt{\mathrm{11}}}}{\Gamma\left(\frac{\mathrm{2}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{6}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{7}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{8}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{10}}{\mathrm{11}}\right)} \\ $$$$\Gamma\left(\frac{\mathrm{2}}{\mathrm{11}}\right)=\Gamma\left(\mathrm{1}−\frac{\mathrm{9}}{\mathrm{11}}\right)=\pi/\left(\mathrm{sin}\left(\frac{\mathrm{9}\pi}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{9}}{\mathrm{11}}\right)\right),\Gamma\left(\frac{\mathrm{6}}{\mathrm{11}}\right)=\Gamma\left(\mathrm{1}−\frac{\mathrm{5}}{\mathrm{11}}\right)=\pi/\left(\mathrm{sin}\left(\frac{\mathrm{5}\pi}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{5}}{\mathrm{11}}\right)\right),\Gamma\left(\frac{\mathrm{7}}{\mathrm{11}}\right)=\Gamma\left(\mathrm{1}−\frac{\mathrm{4}}{\mathrm{11}}\right)=\pi/\left(\mathrm{sin}\left(\frac{\mathrm{4}\pi}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{4}}{\mathrm{11}}\right)\right),\Gamma\left(\frac{\mathrm{8}}{\mathrm{11}}\right)=\Gamma\left(\mathrm{1}−\frac{\mathrm{3}}{\mathrm{11}}\right)=\pi/\left(\mathrm{sin}\left(\frac{\mathrm{3}\pi}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{11}}\right)\right),\Gamma\left(\frac{\mathrm{10}}{\mathrm{11}}\right)=\Gamma\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{11}}\right)=\pi/\left(\mathrm{sin}\left(\frac{\pi}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{11}}\right)\right) \\ $$$$\Gamma\left(\frac{\mathrm{2}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{6}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{7}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{8}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{10}}{\mathrm{11}}\right)=\frac{\pi^{\mathrm{5}} }{\Gamma\left(\frac{\mathrm{1}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{4}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{5}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{9}}{\mathrm{11}}\right)\mathrm{sin}\left(\frac{\pi}{\mathrm{11}}\right)\mathrm{sin}\left(\frac{\mathrm{3}\pi}{\mathrm{11}}\right)\mathrm{sin}\left(\frac{\mathrm{4}\pi}{\mathrm{11}}\right)\mathrm{sin}\left(\frac{\mathrm{5}\pi}{\mathrm{11}}\right)\mathrm{sin}\left(\frac{\mathrm{9}\pi}{\mathrm{11}}\right)} \\ $$$$\mathrm{sin}\left(\frac{\mathrm{9}\pi}{\mathrm{11}}\right)=\mathrm{sin}\left(\pi−\frac{\mathrm{2}\pi}{\mathrm{11}}\right)=\mathrm{sin}\left(\frac{\mathrm{2}\pi}{\mathrm{11}}\right),\mathrm{sin}\left(\frac{\mathrm{5}\pi}{\mathrm{11}}\right)=\mathrm{sin}\left(\pi−\frac{\mathrm{6}\pi}{\mathrm{11}}\right)=\mathrm{sin}\left(\frac{\mathrm{6}\pi}{\mathrm{11}}\right)\mathrm{sin}\left(\frac{\mathrm{7}\pi}{\mathrm{11}}\right)\mathrm{sin}\left(\frac{\mathrm{8}\pi}{\mathrm{11}}\right)\mathrm{sin}\left(\frac{\pi}{\mathrm{11}}\right)=\frac{\mathrm{11}}{\mathrm{2}^{\mathrm{5}} } \\ $$$$\Gamma\left(\frac{\mathrm{1}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{4}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{5}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{9}}{\mathrm{11}}\right)=\frac{\left(\mathrm{2}\pi\right)^{\mathrm{5}} }{\:\sqrt{\mathrm{11}}}\centerdot\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{4}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{5}}{\mathrm{11}}\right)\Gamma\left(\:\left(\frac{\mathrm{9}}{\mathrm{11}}\right)\mathrm{sin}\left(\frac{\pi}{\mathrm{11}}\right)\mathrm{sin}\left(\frac{\mathrm{3}\pi}{\mathrm{11}}\right)\mathrm{sin}\right)\left(\frac{\mathrm{4}\pi}{\mathrm{11}}\right)\mathrm{sin}\left(\frac{\mathrm{5}\pi}{\mathrm{11}}\right)\mathrm{sin}\left(\frac{\mathrm{9}\pi}{\mathrm{11}}\right)}{}\centerdot\frac{\Gamma\left(\frac{\mathrm{2}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{6}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{7}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{8}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{10}}{\mathrm{11}}\right)}{\Gamma\left(\frac{\mathrm{2}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{6}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{7}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{8}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{10}}{\mathrm{11}}\right)} \\ $$$$=\frac{\left(\mathrm{2}\pi\right)^{\mathrm{5}} }{\:\sqrt{\mathrm{11}}}\centerdot\frac{\mathrm{11}}{\mathrm{2}^{\mathrm{5}} \pi^{\mathrm{6}} }=\frac{\left(\mathrm{2}\pi\right)^{\mathrm{5}} }{\:\sqrt{\mathrm{11}}}\centerdot\frac{\mathrm{11}}{\mathrm{32}\pi^{\mathrm{5}} }=\frac{\mathrm{2}^{\mathrm{5}} \pi^{\mathrm{5}} }{\:\sqrt{\mathrm{11}}}\centerdot\frac{\mathrm{11}}{\mathrm{32}\pi^{\mathrm{5}} }=\frac{\mathrm{11}}{\:\sqrt{\mathrm{11}\centerdot\mathrm{32}}}\centerdot\mathrm{32}\sqrt{\mathrm{11}}=\sqrt{\mathrm{11}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}\sqrt{\mathrm{2}\pi^{\mathrm{2}} }}\Gamma\left(\frac{\mathrm{1}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{4}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{5}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{9}}{\mathrm{11}}\right) \\ $$