Menu Close

Question-221637




Question Number 221637 by ASAD7391 last updated on 08/Jun/25
Answered by fantastic last updated on 09/Jun/25
let ∠A=θ ∴∠B=2θ   but ∠A+∠B+∠C=180^0   or θ+2θ=180^0 −90^0 =90^0   or θ=((90^0 )/3)=30^0   So ∠A=30^0 and ∠B=2×30^0 =60^0     cos 60^0 =((BC)/(AB))  or ((BC)/(AB))=(1/2)  So AB=2BC✓ (proved)
$${let}\:\angle{A}=\theta\:\therefore\angle{B}=\mathrm{2}\theta\: \\ $$$${but}\:\angle{A}+\angle{B}+\angle{C}=\mathrm{180}^{\mathrm{0}} \\ $$$${or}\:\theta+\mathrm{2}\theta=\mathrm{180}^{\mathrm{0}} −\mathrm{90}^{\mathrm{0}} =\mathrm{90}^{\mathrm{0}} \\ $$$${or}\:\theta=\frac{\mathrm{90}^{\mathrm{0}} }{\mathrm{3}}=\mathrm{30}^{\mathrm{0}} \\ $$$${So}\:\angle{A}=\mathrm{30}^{\mathrm{0}} {and}\:\angle{B}=\mathrm{2}×\mathrm{30}^{\mathrm{0}} =\mathrm{60}^{\mathrm{0}} \\ $$$$ \\ $$$$\mathrm{cos}\:\mathrm{60}^{\mathrm{0}} =\frac{{BC}}{{AB}} \\ $$$${or}\:\frac{{BC}}{{AB}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${So}\:{AB}=\mathrm{2}{BC}\checkmark\:\left({proved}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *