Menu Close

Solve-for-x-7x-1-3-x-x-0-




Question Number 221620 by fantastic last updated on 08/Jun/25
Solve for x  ((7x))^(1/3) =(√x)[x≠0]
$${Solve}\:{for}\:{x} \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{7}{x}}=\sqrt{{x}}\left[{x}\neq\mathrm{0}\right] \\ $$
Answered by fantastic last updated on 08/Jun/25
or (7x)^(1/3) =x^(1/2)   or (7)^(1/3) .x^(1/3) =x^(1/2)   or (7)^(1/3) =(x^(1/2) /x^(1/3) )  or (7)^(1/3) =x^(((1/2)−(1/3)))   or (7)^(1/3) =x^((((3−2)/6)))   or (7)^(1/3) =x^(1/6)   or 7^(1/3) =x^(1/6)   or 7^(6/3) =x^(6/6)   or 7^2 =x^1   So x=49
$${or}\:\left(\mathrm{7}{x}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} ={x}^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${or}\:\sqrt[{\mathrm{3}}]{\mathrm{7}}.{x}^{\frac{\mathrm{1}}{\mathrm{3}}} ={x}^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${or}\:\sqrt[{\mathrm{3}}]{\mathrm{7}}=\frac{{x}^{\frac{\mathrm{1}}{\mathrm{2}}} }{{x}^{\frac{\mathrm{1}}{\mathrm{3}}} } \\ $$$${or}\:\sqrt[{\mathrm{3}}]{\mathrm{7}}={x}^{\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}}\right)} \\ $$$${or}\:\sqrt[{\mathrm{3}}]{\mathrm{7}}={x}^{\left(\frac{\mathrm{3}−\mathrm{2}}{\mathrm{6}}\right)} \\ $$$${or}\:\sqrt[{\mathrm{3}}]{\mathrm{7}}={x}^{\frac{\mathrm{1}}{\mathrm{6}}} \\ $$$${or}\:\mathrm{7}^{\frac{\mathrm{1}}{\mathrm{3}}} ={x}^{\frac{\mathrm{1}}{\mathrm{6}}} \\ $$$${or}\:\mathrm{7}^{\frac{\mathrm{6}}{\mathrm{3}}} ={x}^{\frac{\mathrm{6}}{\mathrm{6}}} \\ $$$${or}\:\mathrm{7}^{\mathrm{2}} ={x}^{\mathrm{1}} \\ $$$$\boldsymbol{{So}}\:\underline{\underbrace{\boldsymbol{{x}}=\mathrm{49}}} \\ $$
Commented by Frix last updated on 08/Jun/25
You lost the 2^(nd)  solution x=0  (7x)^(1/3) =x^(1/2)   x^(1/2) −7^(1/3) x^(1/3) =0  x^(1/3) (x^(1/6) −7^(1/3) )=0  ⇒ x^(1/3) =0∨(x^(1/6) −7^(1/3) )=0  ⇒ x=0∨x=49
$$\mathrm{You}\:\mathrm{lost}\:\mathrm{the}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{solution}\:{x}=\mathrm{0} \\ $$$$\left(\mathrm{7}{x}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} ={x}^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${x}^{\frac{\mathrm{1}}{\mathrm{2}}} −\mathrm{7}^{\frac{\mathrm{1}}{\mathrm{3}}} {x}^{\frac{\mathrm{1}}{\mathrm{3}}} =\mathrm{0} \\ $$$${x}^{\frac{\mathrm{1}}{\mathrm{3}}} \left({x}^{\frac{\mathrm{1}}{\mathrm{6}}} −\mathrm{7}^{\frac{\mathrm{1}}{\mathrm{3}}} \right)=\mathrm{0} \\ $$$$\Rightarrow\:{x}^{\frac{\mathrm{1}}{\mathrm{3}}} =\mathrm{0}\vee\left({x}^{\frac{\mathrm{1}}{\mathrm{6}}} −\mathrm{7}^{\frac{\mathrm{1}}{\mathrm{3}}} \right)=\mathrm{0} \\ $$$$\Rightarrow\:{x}=\mathrm{0}\vee{x}=\mathrm{49} \\ $$
Commented by fantastic last updated on 08/Jun/25
sir what does the symbol ∨ mean
$${sir}\:{what}\:{does}\:{the}\:{symbol}\:\vee\:{mean} \\ $$
Commented by fantastic last updated on 08/Jun/25
sorry i forgot to mention x≠0
$${sorry}\:{i}\:{forgot}\:{to}\:{mention}\:{x}\neq\mathrm{0} \\ $$
Commented by mr W last updated on 08/Jun/25
∨ or ∪ means “or”  ∧ or ∩ means “and”
$$\vee\:{or}\:\cup\:{means}\:“\boldsymbol{{or}}'' \\ $$$$\wedge\:{or}\:\cap\:{means}\:“\boldsymbol{{and}}'' \\ $$
Commented by fantastic last updated on 09/Jun/25
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *