Question Number 221697 by fantastic last updated on 09/Jun/25

$${Is}\:\sqrt{{i}}\:{an}\:{imaginary}\:{number}\:\left({i}=\sqrt{−\mathrm{1}}\right)\:{answer}\:{with}\:{logic} \\ $$
Answered by Ghisom last updated on 09/Jun/25

$$\mathrm{i}=\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{2}}} \\ $$$${z}={r}\mathrm{e}^{\mathrm{i}\theta} \:\Rightarrow\:\sqrt{{z}}=\sqrt{{r}}\mathrm{e}^{\mathrm{i}\frac{\theta}{\mathrm{2}}} \\ $$$$\Rightarrow\:\sqrt{\mathrm{i}}=\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} =\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{i} \\ $$
Answered by wewji12 last updated on 09/Jun/25

$$\mathrm{From}….\mathrm{Euler}'\mathrm{s}\:\mathrm{identity} \\ $$$${e}^{\boldsymbol{{i}}{t}} =\mathrm{cos}\left({t}\right)+\boldsymbol{{i}}\mathrm{sin}\left({t}\right) \\ $$$${e}^{{z}} =\underset{{h}=\mathrm{0}} {\overset{\infty} {\sum}}\:\:\frac{{z}^{{h}} }{{h}!}\: \\ $$$${e}^{\boldsymbol{{i}}{z}} =\underset{{h}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(\boldsymbol{{i}}{z}\right)^{{h}} }{{h}!}=\mathrm{1}+\boldsymbol{{i}}{z}−\frac{{z}^{\mathrm{2}} }{\mathrm{2}!}−\frac{\boldsymbol{{i}}{z}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{z}^{\mathrm{4}} }{\mathrm{4}!}+\frac{\boldsymbol{{i}}{z}^{\mathrm{5}} }{\mathrm{5}!}….. \\ $$$$\mathrm{Real}\left\{{e}^{\boldsymbol{{i}}{z}} \right\}=\mathrm{1}−\frac{{z}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{z}^{\mathrm{4}} }{\mathrm{4}!}…=\:\mathrm{Tayler}\:\mathrm{Series}\:\mathrm{of}\:\mathrm{cos}\left({z}\right)\: \\ $$$$\mathrm{imag}\left\{{e}^{\boldsymbol{{i}}{z}} \right\}={z}−\frac{{z}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{z}^{\mathrm{5}} }{\mathrm{5}!}…=\mathrm{Tayler}\:\mathrm{Series}\:\mathrm{of}\:\mathrm{sin}\left({z}\right) \\ $$$$\mathrm{So}\:\mathrm{we}\:\mathrm{can}\:\mathrm{get}\:{e}^{\boldsymbol{{i}}{t}} =\mathrm{cos}\left({t}\right)+\boldsymbol{{i}}\centerdot\mathrm{sin}\left({t}\right) \\ $$$$\mathrm{and}\:\mathrm{Let}'\mathrm{s}\:\mathrm{substitute}\:{t}=\pi{t}' \\ $$$${e}^{\boldsymbol{{i}}\pi{t}'} =\mathrm{cos}\left(\pi{t}'\right)+\boldsymbol{{i}}\mathrm{sin}\left(\pi{t}'\right) \\ $$$${e}^{\frac{\mathrm{1}}{\mathrm{4}}\boldsymbol{{i}}\pi} =\mathrm{cos}\left(\frac{\mathrm{1}}{\mathrm{4}}\pi\right)+\boldsymbol{{i}}\centerdot\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{4}}\pi\right)\:\because\:{e}^{\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{{i}}\pi} =\boldsymbol{{i}}\:\rightarrow{e}^{\frac{\mathrm{1}}{\mathrm{4}}\boldsymbol{{i}}\pi} =\sqrt{\boldsymbol{{i}}} \\ $$$$\mathrm{So}…\:\sqrt{\boldsymbol{{i}}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left(\mathrm{1}+\boldsymbol{{i}}\right) \\ $$
Commented by fantastic last updated on 09/Jun/25

$${just}\:{write}\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left(\sqrt{\mathrm{2}{i}}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\sqrt{\mathrm{1}+\mathrm{2}{i}+{i}^{\mathrm{2}} }=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left(\mathrm{1}+{i}\right) \\ $$
Commented by wewji12 last updated on 09/Jun/25

$$\mathrm{No}….. \\ $$$$\mathrm{Your}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{not}\:\mathrm{wrong}.\:\mathrm{but}\:\mathrm{it}\:\mathrm{does}\:\mathrm{not}\:\mathrm{guarantee} \\ $$$$\mathrm{matematical}\:\mathrm{rigor} \\ $$$$\mathrm{Of}\:\mathrm{course}\:\mathrm{not}\:\mathrm{all}\:\mathrm{of}\:\mathrm{my}\:\mathrm{answers}\:\mathrm{are}\:\mathrm{correct}\:\mathrm{because} \\ $$$$\mathrm{complex}\:\mathrm{functions}\:\mathrm{are}\:\mathrm{multivalued}\:\mathrm{function}.. \\ $$$$\mathrm{so}\:\mathrm{they}\:\mathrm{have}\:\mathrm{so}\:\mathrm{many}\:\mathrm{values}\left(\mathrm{almost}\:\mathrm{infinity}\:\mathrm{Solutions}\right) \\ $$$$\mathrm{so}\:\mathrm{to}\:\mathrm{be}\:\mathrm{more}\:\mathrm{precise}\:\mathrm{we}\:\mathrm{have}\:\mathrm{to} \\ $$$$\mathrm{use}\:\mathrm{techniques}\:\mathrm{from}\:\mathrm{complex}\:\mathrm{function}\:\mathrm{theories}\:\mathrm{liked} \\ $$$$\mathrm{Monoromy}\:\mathrm{and}\:\mathrm{Brach}\:\mathrm{Cut}… \\ $$
Commented by fantastic last updated on 09/Jun/25

$${right}\:{sir} \\ $$