Menu Close

Question-221686




Question Number 221686 by Tawa11 last updated on 09/Jun/25
Commented by AlagaIbile last updated on 09/Jun/25
 Let tan x = y, cos x = (1/( (√(y^2  + 1))))  ⇒ cos^(2 ) [cos^(-1)  (1/( (√(y^2  + 1))))]  ⇒ [cos (cos^(-1) (1/( (√(y^2  + 1)))))]^2   ⇒ [(1/( (√(y^2  + 1))))]^2    f(y) = (1/(y^2  + 1))    f(x) = (1/(x^2  + 1))
$$\:{Let}\:\mathrm{tan}\:\boldsymbol{{x}}\:=\:\boldsymbol{{y}},\:\mathrm{cos}\:\boldsymbol{{x}}\:=\:\frac{\mathrm{1}}{\:\sqrt{\boldsymbol{{y}}^{\mathrm{2}} \:+\:\mathrm{1}}} \\ $$$$\Rightarrow\:\mathrm{cos}^{\mathrm{2}\:} \left[\mathrm{cos}^{-\mathrm{1}} \:\frac{\mathrm{1}}{\:\sqrt{\boldsymbol{{y}}^{\mathrm{2}} \:+\:\mathrm{1}}}\right] \\ $$$$\Rightarrow\:\left[\mathrm{cos}\:\left(\mathrm{cos}^{-\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\boldsymbol{{y}}^{\mathrm{2}} \:+\:\mathrm{1}}}\right)\right]^{\mathrm{2}} \\ $$$$\Rightarrow\:\left[\frac{\mathrm{1}}{\:\sqrt{\boldsymbol{{y}}^{\mathrm{2}} \:+\:\mathrm{1}}}\right]^{\mathrm{2}} \\ $$$$\:{f}\left({y}\right)\:=\:\frac{\mathrm{1}}{\boldsymbol{{y}}^{\mathrm{2}} \:+\:\mathrm{1}}\: \\ $$$$\:{f}\left({x}\right)\:=\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} \:+\:\mathrm{1}} \\ $$
Commented by Tawa11 last updated on 09/Jun/25
Thanks sir. I appreciate.
$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$
Answered by mr W last updated on 09/Jun/25
f(tan x)=cos^2  x=((cos^2  x)/(cos^2  x+sin^2  x))=(1/(1+tan^2  x))  replace tan x with x we get  f(x)=(1/(1+x^2 ))
$${f}\left(\mathrm{tan}\:{x}\right)=\mathrm{cos}^{\mathrm{2}} \:{x}=\frac{\mathrm{cos}^{\mathrm{2}} \:{x}}{\mathrm{cos}^{\mathrm{2}} \:{x}+\mathrm{sin}^{\mathrm{2}} \:{x}}=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:{x}} \\ $$$${replace}\:\mathrm{tan}\:{x}\:{with}\:{x}\:{we}\:{get} \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$
Commented by Tawa11 last updated on 09/Jun/25
Thanks sir. I appreciate.
$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$
Commented by Tawa11 last updated on 09/Jun/25
Sir, they claim Q221707  is correct.  Please verify sir.  I don′t mean to stress you.  But I want to know the errors in the question.  Thanks sir.
$$\mathrm{Sir},\:\mathrm{they}\:\mathrm{claim}\:\mathrm{Q221707}\:\:\mathrm{is}\:\mathrm{correct}. \\ $$$$\mathrm{Please}\:\mathrm{verify}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{mean}\:\mathrm{to}\:\mathrm{stress}\:\mathrm{you}. \\ $$$$\mathrm{But}\:\mathrm{I}\:\mathrm{want}\:\mathrm{to}\:\mathrm{know}\:\mathrm{the}\:\mathrm{errors}\:\mathrm{in}\:\mathrm{the}\:\mathrm{question}. \\ $$$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$
Commented by mr W last updated on 09/Jun/25
then why don′t you let them solve the   question?
$${then}\:{why}\:{don}'{t}\:{you}\:{let}\:{them}\:{solve}\:{the}\: \\ $$$${question}? \\ $$
Commented by Tawa11 last updated on 09/Jun/25
True sir.  I just feel like you will have better  approach sir.
$$\mathrm{True}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{just}\:\mathrm{feel}\:\mathrm{like}\:\mathrm{you}\:\mathrm{will}\:\mathrm{have}\:\mathrm{better} \\ $$$$\mathrm{approach}\:\mathrm{sir}. \\ $$
Commented by mr W last updated on 09/Jun/25
as i have said, it is not a clear   question. when it is not a clear  question to me, how can i solve it  and how can i judge your solution?  i think they don′t have a clue and  can′t even draw a clear diagram to   show what they want to mean. the  drawings you have shown are   contridictory to each other. what  should the three circles mean and  how are they defined? actually  it is more a non−sense than a  real question which deserves so  much attention from us. actually  i have chosen to ignore it.  an advice: don′t spend too much  of your time for such pseudo good  questions!
$${as}\:{i}\:{have}\:{said},\:{it}\:{is}\:{not}\:{a}\:{clear}\: \\ $$$${question}.\:{when}\:{it}\:{is}\:{not}\:{a}\:{clear} \\ $$$${question}\:{to}\:{me},\:{how}\:{can}\:{i}\:{solve}\:{it} \\ $$$${and}\:{how}\:{can}\:{i}\:{judge}\:{your}\:{solution}? \\ $$$${i}\:{think}\:{they}\:{don}'{t}\:{have}\:{a}\:{clue}\:{and} \\ $$$${can}'{t}\:{even}\:{draw}\:{a}\:{clear}\:{diagram}\:{to}\: \\ $$$${show}\:{what}\:{they}\:{want}\:{to}\:{mean}.\:{the} \\ $$$${drawings}\:{you}\:{have}\:{shown}\:{are}\: \\ $$$${contridictory}\:{to}\:{each}\:{other}.\:{what} \\ $$$${should}\:{the}\:{three}\:{circles}\:{mean}\:{and} \\ $$$${how}\:{are}\:{they}\:{defined}?\:{actually} \\ $$$${it}\:{is}\:{more}\:{a}\:{non}−{sense}\:{than}\:{a} \\ $$$${real}\:{question}\:{which}\:{deserves}\:{so} \\ $$$${much}\:{attention}\:{from}\:{us}.\:{actually} \\ $$$${i}\:{have}\:{chosen}\:{to}\:{ignore}\:{it}. \\ $$$${an}\:{advice}:\:{don}'{t}\:{spend}\:{too}\:{much} \\ $$$${of}\:{your}\:{time}\:{for}\:{such}\:{pseudo}\:{good} \\ $$$${questions}! \\ $$
Commented by Tawa11 last updated on 09/Jun/25
Sir, please check the solution I posted.
$$\mathrm{Sir},\:\mathrm{please}\:\mathrm{check}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{I}\:\mathrm{posted}. \\ $$
Commented by fantastic last updated on 09/Jun/25
true ����
Commented by Tawa11 last updated on 09/Jun/25
Thanks sir.  I will ignore it sir
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{will}\:\mathrm{ignore}\:\mathrm{it}\:\mathrm{sir} \\ $$
Answered by wewji12 last updated on 09/Jun/25
tan(x)=u  f(u)=cos^2 (tan^(−1) (u))  cos(tan^(−1) (u))=(1/( (√(u^2 +1))))  ∴ cos^2 (tan^(−1) (u))=(1/(u^2 +1))  ∴f(x)=(1/(x^2 +1))  heh EZ???
$$\mathrm{tan}\left({x}\right)={u} \\ $$$${f}\left({u}\right)=\mathrm{cos}^{\mathrm{2}} \left(\mathrm{tan}^{−\mathrm{1}} \left({u}\right)\right) \\ $$$$\mathrm{cos}\left(\mathrm{tan}^{−\mathrm{1}} \left({u}\right)\right)=\frac{\mathrm{1}}{\:\sqrt{{u}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\therefore\:\mathrm{cos}^{\mathrm{2}} \left(\mathrm{tan}^{−\mathrm{1}} \left({u}\right)\right)=\frac{\mathrm{1}}{{u}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\therefore{f}\left({x}\right)=\frac{\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\mathrm{heh}\:\mathrm{EZ}??? \\ $$
Commented by Tawa11 last updated on 09/Jun/25
Thanks sir. I appreciate.
$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$
Answered by efronzo1 last updated on 10/Jun/25
 f(tan x)= cos^2 x= (1/(sec^2 x))=(1/(tan^2 x+1))   f(x) = (1/(x^2 +1))
$$\:\mathrm{f}\left(\mathrm{tan}\:\mathrm{x}\right)=\:\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}=\:\frac{\mathrm{1}}{\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}}=\frac{\mathrm{1}}{\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}+\mathrm{1}} \\ $$$$\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\: \\ $$
Commented by Tawa11 last updated on 10/Jun/25
Thanks sir. I appreciate.
$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *