Question Number 221686 by Tawa11 last updated on 09/Jun/25

Commented by AlagaIbile last updated on 09/Jun/25
![Let tan x = y, cos x = (1/( (√(y^2 + 1)))) ⇒ cos^(2 ) [cos^(-1) (1/( (√(y^2 + 1))))] ⇒ [cos (cos^(-1) (1/( (√(y^2 + 1)))))]^2 ⇒ [(1/( (√(y^2 + 1))))]^2 f(y) = (1/(y^2 + 1)) f(x) = (1/(x^2 + 1))](https://www.tinkutara.com/question/Q221687.png)
$$\:{Let}\:\mathrm{tan}\:\boldsymbol{{x}}\:=\:\boldsymbol{{y}},\:\mathrm{cos}\:\boldsymbol{{x}}\:=\:\frac{\mathrm{1}}{\:\sqrt{\boldsymbol{{y}}^{\mathrm{2}} \:+\:\mathrm{1}}} \\ $$$$\Rightarrow\:\mathrm{cos}^{\mathrm{2}\:} \left[\mathrm{cos}^{-\mathrm{1}} \:\frac{\mathrm{1}}{\:\sqrt{\boldsymbol{{y}}^{\mathrm{2}} \:+\:\mathrm{1}}}\right] \\ $$$$\Rightarrow\:\left[\mathrm{cos}\:\left(\mathrm{cos}^{-\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\boldsymbol{{y}}^{\mathrm{2}} \:+\:\mathrm{1}}}\right)\right]^{\mathrm{2}} \\ $$$$\Rightarrow\:\left[\frac{\mathrm{1}}{\:\sqrt{\boldsymbol{{y}}^{\mathrm{2}} \:+\:\mathrm{1}}}\right]^{\mathrm{2}} \\ $$$$\:{f}\left({y}\right)\:=\:\frac{\mathrm{1}}{\boldsymbol{{y}}^{\mathrm{2}} \:+\:\mathrm{1}}\: \\ $$$$\:{f}\left({x}\right)\:=\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} \:+\:\mathrm{1}} \\ $$
Commented by Tawa11 last updated on 09/Jun/25

$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$
Answered by mr W last updated on 09/Jun/25

$${f}\left(\mathrm{tan}\:{x}\right)=\mathrm{cos}^{\mathrm{2}} \:{x}=\frac{\mathrm{cos}^{\mathrm{2}} \:{x}}{\mathrm{cos}^{\mathrm{2}} \:{x}+\mathrm{sin}^{\mathrm{2}} \:{x}}=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:{x}} \\ $$$${replace}\:\mathrm{tan}\:{x}\:{with}\:{x}\:{we}\:{get} \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$
Commented by Tawa11 last updated on 09/Jun/25

$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$
Commented by Tawa11 last updated on 09/Jun/25

$$\mathrm{Sir},\:\mathrm{they}\:\mathrm{claim}\:\mathrm{Q221707}\:\:\mathrm{is}\:\mathrm{correct}. \\ $$$$\mathrm{Please}\:\mathrm{verify}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{mean}\:\mathrm{to}\:\mathrm{stress}\:\mathrm{you}. \\ $$$$\mathrm{But}\:\mathrm{I}\:\mathrm{want}\:\mathrm{to}\:\mathrm{know}\:\mathrm{the}\:\mathrm{errors}\:\mathrm{in}\:\mathrm{the}\:\mathrm{question}. \\ $$$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$
Commented by mr W last updated on 09/Jun/25

$${then}\:{why}\:{don}'{t}\:{you}\:{let}\:{them}\:{solve}\:{the}\: \\ $$$${question}? \\ $$
Commented by Tawa11 last updated on 09/Jun/25

$$\mathrm{True}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{just}\:\mathrm{feel}\:\mathrm{like}\:\mathrm{you}\:\mathrm{will}\:\mathrm{have}\:\mathrm{better} \\ $$$$\mathrm{approach}\:\mathrm{sir}. \\ $$
Commented by mr W last updated on 09/Jun/25

$${as}\:{i}\:{have}\:{said},\:{it}\:{is}\:{not}\:{a}\:{clear}\: \\ $$$${question}.\:{when}\:{it}\:{is}\:{not}\:{a}\:{clear} \\ $$$${question}\:{to}\:{me},\:{how}\:{can}\:{i}\:{solve}\:{it} \\ $$$${and}\:{how}\:{can}\:{i}\:{judge}\:{your}\:{solution}? \\ $$$${i}\:{think}\:{they}\:{don}'{t}\:{have}\:{a}\:{clue}\:{and} \\ $$$${can}'{t}\:{even}\:{draw}\:{a}\:{clear}\:{diagram}\:{to}\: \\ $$$${show}\:{what}\:{they}\:{want}\:{to}\:{mean}.\:{the} \\ $$$${drawings}\:{you}\:{have}\:{shown}\:{are}\: \\ $$$${contridictory}\:{to}\:{each}\:{other}.\:{what} \\ $$$${should}\:{the}\:{three}\:{circles}\:{mean}\:{and} \\ $$$${how}\:{are}\:{they}\:{defined}?\:{actually} \\ $$$${it}\:{is}\:{more}\:{a}\:{non}−{sense}\:{than}\:{a} \\ $$$${real}\:{question}\:{which}\:{deserves}\:{so} \\ $$$${much}\:{attention}\:{from}\:{us}.\:{actually} \\ $$$${i}\:{have}\:{chosen}\:{to}\:{ignore}\:{it}. \\ $$$${an}\:{advice}:\:{don}'{t}\:{spend}\:{too}\:{much} \\ $$$${of}\:{your}\:{time}\:{for}\:{such}\:{pseudo}\:{good} \\ $$$${questions}! \\ $$
Commented by Tawa11 last updated on 09/Jun/25

$$\mathrm{Sir},\:\mathrm{please}\:\mathrm{check}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{I}\:\mathrm{posted}. \\ $$
Commented by fantastic last updated on 09/Jun/25
true
Commented by Tawa11 last updated on 09/Jun/25

$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{will}\:\mathrm{ignore}\:\mathrm{it}\:\mathrm{sir} \\ $$
Answered by wewji12 last updated on 09/Jun/25

$$\mathrm{tan}\left({x}\right)={u} \\ $$$${f}\left({u}\right)=\mathrm{cos}^{\mathrm{2}} \left(\mathrm{tan}^{−\mathrm{1}} \left({u}\right)\right) \\ $$$$\mathrm{cos}\left(\mathrm{tan}^{−\mathrm{1}} \left({u}\right)\right)=\frac{\mathrm{1}}{\:\sqrt{{u}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\therefore\:\mathrm{cos}^{\mathrm{2}} \left(\mathrm{tan}^{−\mathrm{1}} \left({u}\right)\right)=\frac{\mathrm{1}}{{u}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\therefore{f}\left({x}\right)=\frac{\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\mathrm{heh}\:\mathrm{EZ}??? \\ $$
Commented by Tawa11 last updated on 09/Jun/25

$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$
Answered by efronzo1 last updated on 10/Jun/25

$$\:\mathrm{f}\left(\mathrm{tan}\:\mathrm{x}\right)=\:\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}=\:\frac{\mathrm{1}}{\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}}=\frac{\mathrm{1}}{\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}+\mathrm{1}} \\ $$$$\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\: \\ $$
Commented by Tawa11 last updated on 10/Jun/25

$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$