Menu Close

Question-221733




Question Number 221733 by Tawa11 last updated on 09/Jun/25
Commented by Tawa11 last updated on 09/Jun/25
Is  10.37cm  correct?
$$\mathrm{Is}\:\:\mathrm{10}.\mathrm{37cm}\:\:\mathrm{correct}? \\ $$
Commented by ajfour last updated on 09/Jun/25
nice geometrical cartoon
$${nice}\:{geometrical}\:{cartoon} \\ $$
Commented by som(math1967) last updated on 09/Jun/25
How OT<AT ?
$${How}\:{OT}<{AT}\:? \\ $$
Commented by mr W last updated on 09/Jun/25
it′s terrible when in geometry  questions unclear and misleading  drawings are given, like here or  in Q221707. such questions just  waste other people′s time.
$${it}'{s}\:{terrible}\:{when}\:{in}\:{geometry} \\ $$$${questions}\:{unclear}\:{and}\:{misleading} \\ $$$${drawings}\:{are}\:{given},\:{like}\:{here}\:{or} \\ $$$${in}\:{Q}\mathrm{221707}.\:{such}\:{questions}\:{just} \\ $$$${waste}\:{other}\:{people}'{s}\:{time}. \\ $$
Commented by mr W last updated on 09/Jun/25
i think for this question the correct  drawing should be like following:
$${i}\:{think}\:{for}\:{this}\:{question}\:{the}\:{correct} \\ $$$${drawing}\:{should}\:{be}\:{like}\:{following}: \\ $$
Commented by mr W last updated on 09/Jun/25
Commented by mr W last updated on 10/Jun/25
then we can find the radius  r=((24)/(19))×(√(24^2 −19^2 ))≈18.522 cm
$${then}\:{we}\:{can}\:{find}\:{the}\:{radius} \\ $$$${r}=\frac{\mathrm{24}}{\mathrm{19}}×\sqrt{\mathrm{24}^{\mathrm{2}} −\mathrm{19}^{\mathrm{2}} }\approx\mathrm{18}.\mathrm{522}\:{cm} \\ $$
Commented by Tawa11 last updated on 10/Jun/25
Sir, what formular is this?.  And there is a mistake sir:     r  =  ((24)/(19)) × (√(24^2  − 19^2 ))   ≈  18.52
$$\mathrm{Sir},\:\mathrm{what}\:\mathrm{formular}\:\mathrm{is}\:\mathrm{this}?. \\ $$$$\mathrm{And}\:\mathrm{there}\:\mathrm{is}\:\mathrm{a}\:\mathrm{mistake}\:\mathrm{sir}: \\ $$$$\:\:\:\mathrm{r}\:\:=\:\:\frac{\mathrm{24}}{\mathrm{19}}\:×\:\sqrt{\mathrm{24}^{\mathrm{2}} \:−\:\mathrm{19}^{\mathrm{2}} }\:\:\:\approx\:\:\mathrm{18}.\mathrm{52} \\ $$
Commented by Tawa11 last updated on 10/Jun/25
Can the radius just be   =   (√(24^2   −  19^2 ))
$$\mathrm{Can}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{just}\:\mathrm{be}\:\:\:=\:\:\:\sqrt{\mathrm{24}^{\mathrm{2}} \:\:−\:\:\mathrm{19}^{\mathrm{2}} } \\ $$
Commented by Tawa11 last updated on 10/Jun/25
Can it be:   24^2   =   r^2   +  19^2           r   =   (√(24^2   −  19^2 ))    TB  =  24,
$$\mathrm{Can}\:\mathrm{it}\:\mathrm{be}:\:\:\:\mathrm{24}^{\mathrm{2}} \:\:=\:\:\:\mathrm{r}^{\mathrm{2}} \:\:+\:\:\mathrm{19}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{r}\:\:\:=\:\:\:\sqrt{\mathrm{24}^{\mathrm{2}} \:\:−\:\:\mathrm{19}^{\mathrm{2}} } \\ $$$$ \\ $$$$\mathrm{TB}\:\:=\:\:\mathrm{24},\:\:\:\:\: \\ $$
Commented by Tawa11 last updated on 10/Jun/25
I also saw a formular,  r  =  ((ab)/( (√(a^2   +  b^2 ))))
$$\mathrm{I}\:\mathrm{also}\:\mathrm{saw}\:\mathrm{a}\:\mathrm{formular},\:\:\mathrm{r}\:\:=\:\:\frac{\mathrm{ab}}{\:\sqrt{\mathrm{a}^{\mathrm{2}} \:\:+\:\:\mathrm{b}^{\mathrm{2}} }} \\ $$
Commented by Tawa11 last updated on 10/Jun/25
I want to know when to use:  r  =  (a/b)(√(a^2   −  b^2 ))  r  =  ((ab)/( (√(a^2   +  b^2  ))))  r   =   (√(a^2   −  b^2 ))  For the same diagram.  What condition can change the formula.
$$\mathrm{I}\:\mathrm{want}\:\mathrm{to}\:\mathrm{know}\:\mathrm{when}\:\mathrm{to}\:\mathrm{use}: \\ $$$$\mathrm{r}\:\:=\:\:\frac{\mathrm{a}}{\mathrm{b}}\sqrt{\mathrm{a}^{\mathrm{2}} \:\:−\:\:\mathrm{b}^{\mathrm{2}} } \\ $$$$\mathrm{r}\:\:=\:\:\frac{\mathrm{ab}}{\:\sqrt{\mathrm{a}^{\mathrm{2}} \:\:+\:\:\mathrm{b}^{\mathrm{2}} \:}} \\ $$$$\mathrm{r}\:\:\:=\:\:\:\sqrt{\mathrm{a}^{\mathrm{2}} \:\:−\:\:\mathrm{b}^{\mathrm{2}} } \\ $$$$\mathrm{For}\:\mathrm{the}\:\mathrm{same}\:\mathrm{diagram}. \\ $$$$\mathrm{What}\:\mathrm{condition}\:\mathrm{can}\:\mathrm{change}\:\mathrm{the}\:\mathrm{formula}. \\ $$
Commented by mr W last updated on 10/Jun/25
one can not blindly apply a formula  without knowing what the symbols  behind it mean!!! all the formulas   you mentioned above are wrong or   are right, depending on what a, b, r   in the formulas mean.
$${one}\:{can}\:{not}\:{blindly}\:{apply}\:{a}\:{formula} \\ $$$${without}\:{knowing}\:{what}\:{the}\:{symbols} \\ $$$${behind}\:{it}\:{mean}!!!\:{all}\:{the}\:{formulas}\: \\ $$$${you}\:{mentioned}\:{above}\:{are}\:{wrong}\:{or}\: \\ $$$${are}\:{right},\:{depending}\:{on}\:{what}\:{a},\:{b},\:{r}\: \\ $$$${in}\:{the}\:{formulas}\:{mean}. \\ $$
Commented by mr W last updated on 10/Jun/25
Commented by mr W last updated on 10/Jun/25
clearly (√(24^2 −19^2 ))=TC ≠ OB  i thought the diagram is  clear enough.
$${clearly}\:\sqrt{\mathrm{24}^{\mathrm{2}} −\mathrm{19}^{\mathrm{2}} }={TC}\:\neq\:{OB} \\ $$$${i}\:{thought}\:{the}\:{diagram}\:{is} \\ $$$${clear}\:{enough}. \\ $$
Commented by mr W last updated on 10/Jun/25
my solution (NOT my formula) is  ΔTBO∼ΔBCT  ⇒((OB)/(TB))=((TC)/(BC))  i.e. (r/(24))=((√(24^2 −19^2 ))/(19))  ⇒r=((24×(√(24^2 −19^2 )))/(19))≈18.522 cm
$${my}\:{solution}\:\left({NOT}\:{my}\:{formula}\right)\:{is} \\ $$$$\Delta{TBO}\sim\Delta{BCT} \\ $$$$\Rightarrow\frac{{OB}}{{TB}}=\frac{{TC}}{{BC}} \\ $$$${i}.{e}.\:\frac{{r}}{\mathrm{24}}=\frac{\sqrt{\mathrm{24}^{\mathrm{2}} −\mathrm{19}^{\mathrm{2}} }}{\mathrm{19}} \\ $$$$\Rightarrow{r}=\frac{\mathrm{24}×\sqrt{\mathrm{24}^{\mathrm{2}} −\mathrm{19}^{\mathrm{2}} }}{\mathrm{19}}\approx\mathrm{18}.\mathrm{522}\:{cm} \\ $$
Commented by mr W last updated on 10/Jun/25
depending on what is given, one  can determine the radius in  different ways. but it makes no  sense just to memorize the   formulas.
$${depending}\:{on}\:{what}\:{is}\:{given},\:{one} \\ $$$${can}\:{determine}\:{the}\:{radius}\:{in} \\ $$$${different}\:{ways}.\:{but}\:{it}\:{makes}\:{no} \\ $$$${sense}\:{just}\:{to}\:{memorize}\:{the}\: \\ $$$${formulas}. \\ $$
Commented by mr W last updated on 10/Jun/25
Commented by Tawa11 last updated on 10/Jun/25
Wow thanks sir, I really appreciate.  God bless you more.
$$\mathrm{Wow}\:\mathrm{thanks}\:\mathrm{sir},\:\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{more}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *