Question Number 221788 by Tawa11 last updated on 10/Jun/25

Answered by mr W last updated on 10/Jun/25

Commented by mr W last updated on 10/Jun/25

$${AC}=\sqrt{\left(\mathrm{2}{R}\right)^{\mathrm{2}} −\mathrm{6}^{\mathrm{2}} } \\ $$$${BD}=\sqrt{\left(\mathrm{2}{R}\right)^{\mathrm{2}} −\mathrm{14}^{\mathrm{2}} } \\ $$$${AC}×{BD}=\mathrm{6}×\left(\mathrm{2}{R}\right)+\mathrm{14}×\mathrm{6} \\ $$$$\sqrt{\left(\mathrm{4}{R}^{\mathrm{2}} −\mathrm{36}\right)\left(\mathrm{4}{R}^{\mathrm{2}} −\mathrm{196}\right)}=\mathrm{12}{R}+\mathrm{14}×\mathrm{6} \\ $$$$\sqrt{\left({R}^{\mathrm{2}} −\mathrm{9}\right)\left({R}^{\mathrm{2}} −\mathrm{49}\right)}=\mathrm{3}\left({R}+\mathrm{7}\right) \\ $$$${R}^{\mathrm{2}} −\mathrm{7}{R}−\mathrm{18}=\mathrm{0} \\ $$$$\left({R}+\mathrm{2}\right)\left({R}−\mathrm{9}\right)=\mathrm{0}\:\Rightarrow{R}=\mathrm{9}\:\checkmark \\ $$
Commented by Tawa11 last updated on 10/Jun/25

$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$
Answered by mr W last updated on 10/Jun/25

Commented by mr W last updated on 10/Jun/25

$${R}^{\mathrm{2}} −\mathrm{7}^{\mathrm{2}} =\mathrm{6}^{\mathrm{2}} −\left({R}−\mathrm{7}\right)^{\mathrm{2}} \\ $$$${R}^{\mathrm{2}} −\mathrm{7}{R}−\mathrm{18}=\mathrm{0} \\ $$$$\left({R}+\mathrm{2}\right)\left({R}−\mathrm{9}\right)=\mathrm{0}\:\Rightarrow{R}=\mathrm{9}\:\checkmark \\ $$
Commented by Tawa11 last updated on 10/Jun/25

$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$
Answered by mehdee7396 last updated on 10/Jun/25

$$\frac{\mathrm{14}}{{sin}\mathrm{2}\theta}=\frac{{r}}{{sin}\theta}\:\:\:\&\:\:\:\frac{\mathrm{6}}{{sin}\theta}=\frac{{r}}{{sin}\left(\mathrm{90}−\frac{\theta}{\mathrm{2}}\right)} \\ $$$$\frac{\mathrm{7}}{{cos}\theta}={r}\Rightarrow\frac{\mathrm{6}}{{sin}\theta}=\frac{\mathrm{7}}{{cos}\theta{cos}\frac{\theta}{\mathrm{2}}} \\ $$$$\mathrm{7}{sin}\frac{\theta}{\mathrm{2}}=\mathrm{3}{cos}\theta\Rightarrow\mathrm{6}{sin}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}+\mathrm{7}{sin}\frac{\theta}{\mathrm{2}}−\mathrm{3}=\mathrm{0} \\ $$$$\Rightarrow{sin}\frac{\theta}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{3}}\Rightarrow{cos}\theta=\frac{\mathrm{7}}{\mathrm{9}}\:\Rightarrow{r}=\mathrm{9}\:\: \\ $$$$ \\ $$
Commented by mehdee7396 last updated on 10/Jun/25

Commented by Tawa11 last updated on 10/Jun/25

$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$
Commented by Tawa11 last updated on 10/Jun/25

$$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{arrive}\:\mathrm{at}\:\:\mathrm{7sin}\frac{\theta}{\mathrm{2}}\:\:=\:\:\mathrm{3cos}\theta \\ $$
Commented by mehdee7396 last updated on 10/Jun/25

$$\frac{\mathrm{6}}{{sin}\theta}=\frac{\mathrm{7}}{{cos}\theta{cos}\frac{\theta}{\mathrm{2}}} \\ $$$$\Rightarrow\frac{\mathrm{6}}{\mathrm{2}{sin}\frac{\theta}{\mathrm{2}}{cos}\frac{\theta}{\mathrm{2}}}=\frac{\mathrm{7}}{{cos}\theta{cos}\frac{\theta}{\mathrm{2}}} \\ $$$$\Rightarrow\mathrm{6}{cos}\theta{cos}\frac{\theta}{\mathrm{2}}=\mathrm{14}{sin}\frac{\theta}{\mathrm{2}}{cos}\frac{\theta}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{3}{cos}\theta=\mathrm{7}{sin}\frac{\theta}{\mathrm{2}} \\ $$$$ \\ $$
Commented by Tawa11 last updated on 10/Jun/25

$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{understand}\:\mathrm{now}. \\ $$
Answered by mr W last updated on 10/Jun/25

Commented by mr W last updated on 11/Jun/25

$${yes}.\:{try}\:{to}\:{find}\:{it}\:{out}! \\ $$
Commented by mr W last updated on 10/Jun/25

$$\mathrm{6}^{\mathrm{2}} −\left({R}−\mathrm{7}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} −\mathrm{7}^{\mathrm{2}} \\ $$$${R}^{\mathrm{2}} −\mathrm{7}{R}−\mathrm{18}=\mathrm{0} \\ $$$$\left({R}+\mathrm{2}\right)\left({R}−\mathrm{9}\right)=\mathrm{0}\:\Rightarrow{R}=\mathrm{9} \\ $$
Commented by Tawa11 last updated on 10/Jun/25

$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$
Commented by Tawa11 last updated on 11/Jun/25

$$\mathrm{Sir},\:\mathrm{is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{way}\:\mathrm{to}\:\mathrm{know}\:\mathrm{that} \\ $$$$\mathrm{sir}\:\mathrm{is}\:\:\mathrm{7}? \\ $$
Commented by fantastic last updated on 11/Jun/25

$${draw}\:\bot{on}\:\mathrm{14}\:{from}\:{the}\:{center}.{you}\:{will}\:{get}\:{a}\:{rectangle} \\ $$
Commented by fantastic last updated on 11/Jun/25

$$ \\ $$
Commented by Tawa11 last updated on 11/Jun/25

$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{understand}. \\ $$
Commented by mr W last updated on 11/Jun/25

$${is}\:{it}\:{not}\:{obvious}: \\ $$
Commented by mr W last updated on 11/Jun/25

Commented by Tawa11 last updated on 11/Jun/25

$$\mathrm{Yes}\:\mathrm{sir},\:\mathrm{I}\:\mathrm{understand}\:\mathrm{it}\:\mathrm{now}. \\ $$$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$
Commented by Tawa11 last updated on 11/Jun/25

$$\mathrm{Sir},\:\mathrm{please}\:\mathrm{give}\:\mathrm{me}\:\mathrm{similar}\:\mathrm{geometry}. \\ $$$$\mathrm{I}\:\mathrm{want}\:\mathrm{to}\:\mathrm{practice}. \\ $$
Commented by mr W last updated on 11/Jun/25

$${then}\:{solve}\:{this}\:{question}\:{in}\:{a}\:{new} \\ $$$${way}!\:{i}\:{have}\:{shown}\:{three}\:{ways}. \\ $$
Commented by Tawa11 last updated on 11/Jun/25

$$\mathrm{I}\:\mathrm{will}\:\mathrm{try}\:\mathrm{sir}. \\ $$
Commented by Tawa11 last updated on 12/Jun/25

Commented by Tawa11 last updated on 12/Jun/25

$$\:\:\:\mathrm{R}^{\mathrm{2}} \:\:−\:\:\mathrm{7}^{\mathrm{2}} \:\:\:=\:\:\:\mathrm{6}^{\mathrm{2}} \:\:−\:\:\left(\mathrm{R}\:\:−\:\:\mathrm{7}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:\:\mathrm{R}\:\:=\:\:\mathrm{9} \\ $$
Answered by ajfour last updated on 12/Jun/25

$$\mathrm{4}{r}^{\mathrm{2}} −\mathrm{196}={s}^{\mathrm{2}} \\ $$$$\mathrm{cos}\:\mathrm{2}\theta=\frac{\mathrm{14}}{\mathrm{2}{r}}=\frac{\mathrm{7}}{{r}} \\ $$$$\mathrm{sin}\:\theta=\frac{\mathrm{3}}{{r}} \\ $$$$\frac{\mathrm{7}}{{r}}=\mathrm{1}−\mathrm{2}\left(\frac{\mathrm{3}}{{r}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\:{r}^{\mathrm{2}} −\mathrm{7}{r}−\mathrm{18}=\mathrm{0} \\ $$$${r}=\frac{\mathrm{7}}{\mathrm{2}}\pm\sqrt{\frac{\mathrm{49}+\mathrm{72}}{\mathrm{4}}} \\ $$$${r}=\:\mathrm{9}\:{units}\:{or}\:\cancel{−\mathrm{2}\:{units}} \\ $$$$\:\:{r}=\mathrm{9} \\ $$
Commented by Tawa11 last updated on 12/Jun/25

$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{appreciate}. \\ $$
Answered by mr W last updated on 12/Jun/25

$$\mathrm{cos}\:{A}=\frac{\mathrm{24}}{\mathrm{2}{R}}=\frac{\mathrm{7}}{{R}} \\ $$$${BD}^{\mathrm{2}} =\left(\mathrm{2}{R}\right)^{\mathrm{2}} −\mathrm{14}^{\mathrm{2}} =\mathrm{6}^{\mathrm{2}} +\mathrm{6}^{\mathrm{2}} +\mathrm{2}×\mathrm{6}×\mathrm{6}×\frac{\mathrm{7}}{{R}} \\ $$$${R}^{\mathrm{2}} −\frac{\mathrm{126}}{{R}}−\mathrm{67}=\mathrm{0} \\ $$$${R}^{\mathrm{3}} −\mathrm{67}{R}−\mathrm{126}=\mathrm{0} \\ $$$$\left({R}−\mathrm{9}\right)\left({R}+\mathrm{2}\right)\left({R}+\mathrm{7}\right)=\mathrm{0} \\ $$$$\Rightarrow{R}=\mathrm{9} \\ $$
Commented by Tawa11 last updated on 12/Jun/25

$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$