Menu Close

Question-221814




Question Number 221814 by Tawa11 last updated on 10/Jun/25
Answered by wewji12 last updated on 11/Jun/25
log_a (b)=((log_b (c))/(log_a (c)))  ((ln(2))/(ln(x+1)))+((ln(3))/(ln(x+2)))+((ln(4))/(ln(x+3)))=3  if x=1   ((ln(2))/(ln(2)))+((ln(3))/(ln(3)))+((ln(4))/(ln(4)))=3.  ∴ x=1....
$$\mathrm{log}_{{a}} \left({b}\right)=\frac{\mathrm{log}_{{b}} \left({c}\right)}{\mathrm{log}_{{a}} \left({c}\right)} \\ $$$$\frac{\mathrm{ln}\left(\mathrm{2}\right)}{\mathrm{ln}\left({x}+\mathrm{1}\right)}+\frac{\mathrm{ln}\left(\mathrm{3}\right)}{\mathrm{ln}\left({x}+\mathrm{2}\right)}+\frac{\mathrm{ln}\left(\mathrm{4}\right)}{\mathrm{ln}\left({x}+\mathrm{3}\right)}=\mathrm{3} \\ $$$$\mathrm{if}\:{x}=\mathrm{1}\: \\ $$$$\frac{\mathrm{ln}\left(\mathrm{2}\right)}{\mathrm{ln}\left(\mathrm{2}\right)}+\frac{\mathrm{ln}\left(\mathrm{3}\right)}{\mathrm{ln}\left(\mathrm{3}\right)}+\frac{\mathrm{ln}\left(\mathrm{4}\right)}{\mathrm{ln}\left(\mathrm{4}\right)}=\mathrm{3}. \\ $$$$\therefore\:{x}=\mathrm{1}…. \\ $$
Commented by wewji12 last updated on 11/Jun/25
if x<0...?    x_(n+1) =x_n −((f(x_n ))/(f ′(x_n )))  and Let′s start x_1 =−(1/3)    f(x)=log_(x+1) (2)+log_(x+2) (3)+log_(x+3) (4)−3  because we finding value ′′x′′   log_(x+1) (2)+log_(x+2) (3)+log_(x+3) (4)=3  so we can set f(x) as  f(x)=log_(x+1) (2)+log_(x+2) (3)+log_(x+3) (4)−3  lim_(n→∞) x_(n+1) ≈−0.47190214154884974.....
$$\mathrm{if}\:{x}<\mathrm{0}…?\:\: \\ $$$${x}_{{n}+\mathrm{1}} ={x}_{{n}} −\frac{{f}\left({x}_{{n}} \right)}{{f}\:'\left({x}_{{n}} \right)}\:\:\mathrm{and}\:\mathrm{Let}'\mathrm{s}\:\mathrm{start}\:{x}_{\mathrm{1}} =−\frac{\mathrm{1}}{\mathrm{3}}\:\: \\ $$$${f}\left({x}\right)=\mathrm{log}_{{x}+\mathrm{1}} \left(\mathrm{2}\right)+\mathrm{log}_{{x}+\mathrm{2}} \left(\mathrm{3}\right)+\mathrm{log}_{{x}+\mathrm{3}} \left(\mathrm{4}\right)−\mathrm{3} \\ $$$$\mathrm{because}\:\mathrm{we}\:\mathrm{finding}\:\mathrm{value}\:''{x}'' \\ $$$$\:\mathrm{log}_{{x}+\mathrm{1}} \left(\mathrm{2}\right)+\mathrm{log}_{{x}+\mathrm{2}} \left(\mathrm{3}\right)+\mathrm{log}_{{x}+\mathrm{3}} \left(\mathrm{4}\right)=\mathrm{3} \\ $$$$\mathrm{so}\:\mathrm{we}\:\mathrm{can}\:\mathrm{set}\:{f}\left({x}\right)\:\mathrm{as} \\ $$$${f}\left({x}\right)=\mathrm{log}_{{x}+\mathrm{1}} \left(\mathrm{2}\right)+\mathrm{log}_{{x}+\mathrm{2}} \left(\mathrm{3}\right)+\mathrm{log}_{{x}+\mathrm{3}} \left(\mathrm{4}\right)−\mathrm{3} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{x}_{{n}+\mathrm{1}} \approx−\mathrm{0}.\mathrm{47190214154884974}….. \\ $$
Commented by MathematicalUser2357 last updated on 11/Jun/25
Did you just forgot the rules of logarithms and derivatives and integrals?
Commented by wewji12 last updated on 11/Jun/25
미분이요? 미분해서 어떻게하실려고요 ㅋㅋㅋㅋㅋ 그리고 각 각 log(x+1,2) log(x+2,3) log(x+3,4)를 곱한다음에 다시 미분을 할려해도 과정이 복잡할뿐이고 왠 미적분....? 알다싶이 a에서의 함수 f(x)의 f(a)+f'(a)(x-a)가 그 함수의 점(a,f(a))에서의 접선의 방정식이고 그걸 이용해서 영점 근사하는것도 뭐 일종의 미적분을 응용한 방법이긴한데 무슨말씀이신 이해가안가네요
Commented by MathematicalUser2357 last updated on 13/Jun/25
then eat this apple and grow your memory
Commented by MathematicalUser2357 last updated on 13/Jun/25
I was drunk bruh
$$\boldsymbol{\mathrm{I}}\:\boldsymbol{\mathrm{was}}\:\boldsymbol{\mathrm{drunk}}\:\boldsymbol{\mathrm{bruh}} \\ $$
Commented by fantastic last updated on 13/Jun/25
����

Leave a Reply

Your email address will not be published. Required fields are marked *