Menu Close

if-a-3-x-b-5x-a-5-x-b-3x-then-show-that-xlog-b-a-log-a-




Question Number 221869 by fantastic last updated on 12/Jun/25
if a^(3−x) .b^(5x) =a^(5+x) .b^(3x)  then show that  xlog ((b/a))=log a
$${if}\:{a}^{\mathrm{3}−{x}} .{b}^{\mathrm{5}{x}} ={a}^{\mathrm{5}+{x}} .{b}^{\mathrm{3}{x}} \:{then}\:{show}\:{that} \\ $$$${x}\mathrm{log}\:\left(\frac{{b}}{{a}}\right)=\mathrm{log}\:{a} \\ $$
Answered by fantastic last updated on 12/Jun/25
we can write (a^3 /a^x ).b^(5x) =a^5 .a^x .b^(3x)   or b^(2x) =a^(2x) .a^2   or b^x =a^x .a  or ((b/a))^x =a  So log ((b/a))^x =log a  ∴ xlog ((b/a))=log a
$${we}\:{can}\:{write}\:\frac{{a}^{\mathrm{3}} }{{a}^{{x}} }.{b}^{\mathrm{5}{x}} ={a}^{\mathrm{5}} .{a}^{{x}} .{b}^{\mathrm{3}{x}} \\ $$$${or}\:{b}^{\mathrm{2}{x}} ={a}^{\mathrm{2}{x}} .{a}^{\mathrm{2}} \\ $$$${or}\:{b}^{{x}} ={a}^{{x}} .{a} \\ $$$${or}\:\left(\frac{{b}}{{a}}\right)^{{x}} ={a} \\ $$$${So}\:\mathrm{log}\:\left(\frac{{b}}{{a}}\right)^{{x}} =\mathrm{log}\:{a} \\ $$$$\therefore\:{x}\mathrm{log}\:\left(\frac{{b}}{{a}}\right)=\mathrm{log}\:{a} \\ $$
Commented by Rasheed.Sindhi last updated on 12/Jun/25
Ni⊂∈!
$$\mathbb{N}\boldsymbol{\mathrm{i}}\subset\in! \\ $$
Commented by fantastic last updated on 12/Jun/25
τhαηκℑ
$$\tau{h}\alpha\eta\kappa\Im \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *