Question Number 221815 by alvan545 last updated on 11/Jun/25

Answered by mr W last updated on 11/Jun/25

$${say}\:{AC}={c} \\ $$$${BC}^{\mathrm{2}} ={CD}^{\mathrm{2}} \\ $$$${a}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{2}{ac}\:\mathrm{cos}\:\theta={b}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{2}{bc}\:\mathrm{cos}\:\theta \\ $$$$\mathrm{2}\left({b}−{a}\right){c}\:\mathrm{cos}\:\theta={b}^{\mathrm{2}} −{a}^{\mathrm{2}} \\ $$$$\mathrm{2}{c}\:\mathrm{cos}\:\theta={a}+{b} \\ $$$$\Rightarrow{c}=\frac{{a}+{b}}{\mathrm{2}\:\mathrm{cos}\:\theta} \\ $$$${S}_{{ABCD}} ={S}_{{ABC}} +{S}_{{CDA}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{ac}\:\mathrm{sin}\:\theta}{\mathrm{2}}+\frac{{bc}\:\mathrm{sin}\:\theta}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\left({a}+{b}\right){c}\:\mathrm{sin}\:\theta}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\left({a}+{b}\right)\left({a}+{b}\right)\:\mathrm{sin}\:\theta}{\mathrm{4}\:\mathrm{cos}\:\theta} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\left({a}+{b}\right)^{\mathrm{2}} \:\mathrm{tan}\:\theta}{\mathrm{4}}\:\checkmark \\ $$
Commented by alvan545 last updated on 11/Jun/25