Menu Close

Simplify-2-2-2-2-70-t-1-10-




Question Number 221991 by hardmath last updated on 14/Jun/25
Simplify:   2^2  ∙ 2^(2^((70 − t_1 )/(10))    =   ?)
$$\mathrm{Simplify}:\:\:\:\mathrm{2}^{\mathrm{2}} \:\centerdot\:\mathrm{2}^{\mathrm{2}^{\frac{\mathrm{70}\:−\:\boldsymbol{\mathrm{t}}_{\mathrm{1}} }{\mathrm{10}}} \:\:\:=\:\:\:?} \\ $$
Commented by hardmath last updated on 14/Jun/25
yes
$$\mathrm{yes} \\ $$
Commented by fantastic last updated on 14/Jun/25
no I mean  is t_1  just a variable like x,y ?or it has speciality?
$${no}\:{I}\:{mean}\:\:{is}\:{t}_{\mathrm{1}} \:{just}\:{a}\:{variable}\:{like}\:{x},{y}\:?{or}\:{it}\:{has}\:{speciality}? \\ $$
Commented by hardmath last updated on 14/Jun/25
  just like t1 (we can say variable)
$$ \\ $$just like t1 (we can say variable)
Commented by fantastic last updated on 14/Jun/25
t_1 ??
$${t}_{\mathrm{1}} ?? \\ $$
Answered by fantastic last updated on 14/Jun/25
I think it is  2^((2+2^((70−t_1 )/(10)) )) =2^((2+(2^7 /2^(t_1 /(10)) ))) =2^((((2^((t_1 +10)/(10)) +2^7 )/2^(t_1 /(10)) ))) =...[more complex]  So I think the simpler form is 2^((2+2^((70−t_1 )/(10)) ) )   cause others are getting more complex
$${I}\:{think}\:{it}\:{is} \\ $$$$\mathrm{2}^{\left(\mathrm{2}+\mathrm{2}^{\frac{\mathrm{70}−{t}_{\mathrm{1}} }{\mathrm{10}}} \right)} =\mathrm{2}^{\left(\mathrm{2}+\frac{\mathrm{2}^{\mathrm{7}} }{\mathrm{2}^{\frac{{t}_{\mathrm{1}} }{\mathrm{10}}} }\right)} =\mathrm{2}^{\left(\frac{\mathrm{2}^{\frac{{t}_{\mathrm{1}} +\mathrm{10}}{\mathrm{10}}} +\mathrm{2}^{\mathrm{7}} }{\mathrm{2}^{\frac{{t}_{\mathrm{1}} }{\mathrm{10}}} }\right)} =…\left[{more}\:{complex}\right] \\ $$$${So}\:{I}\:{think}\:{the}\:{simpler}\:{form}\:{is}\:\mathrm{2}^{\left(\mathrm{2}+\mathrm{2}^{\frac{\mathrm{70}−{t}_{\mathrm{1}} }{\mathrm{10}}} \right)\:} \\ $$$${cause}\:{others}\:{are}\:{getting}\:{more}\:{complex} \\ $$$$ \\ $$
Commented by Frix last updated on 14/Jun/25
4^(1+64×2^(−(t_1 /(10))) ) =4^(1+((64)/( (2^t_1  )^(1/(10)) )))   Anyway not very simplify−able...
$$\mathrm{4}^{\mathrm{1}+\mathrm{64}×\mathrm{2}^{−\frac{{t}_{\mathrm{1}} }{\mathrm{10}}} } =\mathrm{4}^{\mathrm{1}+\frac{\mathrm{64}}{\:\sqrt[{\mathrm{10}}]{\mathrm{2}^{{t}_{\mathrm{1}} } }}} \\ $$$$\mathrm{Anyway}\:\mathrm{not}\:\mathrm{very}\:\mathrm{simplify}−\mathrm{able}… \\ $$
Commented by hardmath last updated on 14/Jun/25
2^((70−t_1 )/(10))  = 4 ∙ 4^((70−t_1 )/(10))    ⇒   t_1  = ?
$$\mathrm{2}^{\frac{\mathrm{70}−\boldsymbol{\mathrm{t}}_{\mathrm{1}} }{\mathrm{10}}} \:=\:\mathrm{4}\:\centerdot\:\mathrm{4}^{\frac{\mathrm{70}−\boldsymbol{\mathrm{t}}_{\mathrm{1}} }{\mathrm{10}}} \:\:\:\Rightarrow\:\:\:\mathrm{t}_{\mathrm{1}} \:=\:? \\ $$
Commented by Rasheed.Sindhi last updated on 14/Jun/25
The required is to simplify  not to solve for t_1   The given is not an equation.
$${The}\:{required}\:{is}\:{to}\:{simplify} \\ $$$${not}\:{to}\:{solve}\:{for}\:{t}_{\mathrm{1}} \\ $$$${The}\:{given}\:{is}\:{not}\:{an}\:{equation}. \\ $$
Commented by Frix last updated on 14/Jun/25
Weirdness taking over...
$$\mathrm{Weirdness}\:\mathrm{taking}\:\mathrm{over}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *