Question Number 222044 by wewji12 last updated on 15/Jun/25

$$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{evaluate} \\ $$$$\int_{−\infty} ^{\:\:\infty} \:\:\frac{\mathrm{sin}\left({z}+\mathrm{1}\right)}{\left({z}+\mathrm{1}\right)\left({z}^{\mathrm{2}} +\mathrm{1}\right)}\:\mathrm{d}{z} \\ $$
Answered by vnm last updated on 15/Jun/25

$$ \\ $$$$\frac{\mathrm{1}}{\left({z}+\mathrm{1}\right)\left({z}^{\mathrm{2}} +\mathrm{1}\right)}=\frac{{a}}{{z}+\mathrm{1}}+\frac{{bz}+{c}}{{z}^{\mathrm{2}} +\mathrm{1}}=\frac{\left({a}+{b}\right){z}^{\mathrm{2}} +\left({b}+{c}\right){z}+\left({a}+{c}\right)}{\left({z}+\mathrm{1}\right)\left({z}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$${a}+{b}=\mathrm{0},\:\:{b}+{c}=\mathrm{0},\:\:{a}+{c}=\mathrm{1} \\ $$$${a}={c}=\frac{\mathrm{1}}{\mathrm{2}},\:\:{b}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{−\infty} ^{+\infty} \mathrm{sin}\left({z}+\mathrm{1}\right)\centerdot\left(\frac{\mathrm{1}}{{z}+\mathrm{1}}+\frac{−{z}+\mathrm{1}}{{z}^{\mathrm{2}} +\mathrm{1}}\right){dz}= \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\pi+\frac{\mathrm{1}}{\mathrm{2}}\int_{−\infty} ^{+\infty} \frac{\left(\mathrm{1}−{z}\right)\mathrm{sin}\left({z}+\mathrm{1}\right)}{{z}^{\mathrm{2}} +\mathrm{1}}{dz}=\frac{\pi}{\mathrm{2}}+\frac{{I}}{\mathrm{2}} \\ $$$$\frac{\left(\mathrm{1}−{z}\right)\mathrm{sin}\left({z}+\mathrm{1}\right)}{{z}^{\mathrm{2}} +\mathrm{1}}=\frac{\left(\mathrm{1}−{z}\right)\left(\mathrm{cos1}\centerdot\mathrm{sin}{z}+\mathrm{sin1}\centerdot\mathrm{cos}{z}\right)}{{z}^{\mathrm{2}} +\mathrm{1}}= \\ $$$$\frac{\mathrm{cos1}\centerdot\mathrm{sin}{z}+\mathrm{sin1}\centerdot\mathrm{cos}{z}−\mathrm{cos1}\centerdot{z}\mathrm{sin}{z}−\mathrm{sin1}\centerdot{z}\mathrm{cos}{z}}{{z}^{\mathrm{2}} +\mathrm{1}} \\ $$$${I}=\mathrm{sin1}\centerdot\int_{−\infty} ^{+\infty} \frac{\mathrm{cos}{z}}{{z}^{\mathrm{2}} +\mathrm{1}}{dz}−\mathrm{cos1}\centerdot\int_{−\infty} ^{+\infty} \frac{{z}\mathrm{sin}{z}}{{z}^{\mathrm{2}} +\mathrm{1}}{dz} \\ $$$${z}\in\mathbb{R},\:{w}\in\mathbb{C} \\ $$$$\int_{−\infty} ^{+\infty} \frac{\mathrm{cos}{z}}{{z}^{\mathrm{2}} +\mathrm{1}}{dz}=\mathrm{Re}\int_{−\infty} ^{+\infty} \frac{{e}^{{iz}} }{{z}^{\mathrm{2}} +\mathrm{1}}{dz}= \\ $$$$\mathrm{Re}\left\{\mathrm{2}\pi{i}\centerdot\mathrm{res}\left(\frac{{e}^{{iw}} }{{w}^{\mathrm{2}} +\mathrm{1}}\right)_{{w}={i}} \right\}=\mathrm{Re}\left\{\mathrm{2}\pi{i}\frac{{e}^{{iw}} }{\mathrm{2}{w}}\mid_{{w}={i}} \right\}=\frac{\pi}{{e}} \\ $$$$\int_{−\infty} ^{+\infty} \frac{{z}\mathrm{sin}{z}}{{z}^{\mathrm{2}} +\mathrm{1}}{dz}=\mathrm{Im}\int_{−\infty} ^{+\infty} \frac{{ze}^{{iz}} }{{z}^{\mathrm{2}} +\mathrm{1}}{dz}= \\ $$$$\mathrm{Im}\left\{\mathrm{2}\pi{i}\centerdot\mathrm{res}\left(\frac{{we}^{{iw}} }{{w}^{\mathrm{2}} +\mathrm{1}}\right)_{{w}={i}} \right\}=\mathrm{Im}\left\{\mathrm{2}\pi{i}\frac{{we}^{{iw}} }{\mathrm{2}{w}}\mid_{{w}={i}} \right\}= \\ $$$$\mathrm{Im}\left\{{i}\frac{\pi}{{e}}\right\}=\frac{\pi}{{e}} \\ $$$${I}=\left(\mathrm{sin1}−\mathrm{cos1}\right)\frac{\pi}{{e}} \\ $$$$\mathrm{answer}:\:\frac{\pi}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{sin1}−\mathrm{cos1}\right)\frac{\pi}{{e}}=\frac{\pi}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{sin1}−\mathrm{cos1}}{{e}}\right) \\ $$