Question Number 222123 by mr W last updated on 18/Jun/25

Commented by mr W last updated on 18/Jun/25

$${a}\:{ball}\:{is}\:{released}\:{at}\:{the}\:{point}\:\left({d},\:{h}\right) \\ $$$${and}\:{is}\:{rebounded}\:{from}\:{the}\:{ground}\: \\ $$$${which}\:{has}\:{the}\:{shape}\:{of}\:{a}\:{hyperbola} \\ $$$${with}\:{equation}\:−\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{\left({y}+{b}\right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}.\: \\ $$$${if}\:{the}\:{ball}\:{hits}\:{exactly}\:{the}\:{point} \\ $$$$\left(\mathrm{0},\:\mathrm{0}\right)\:{after}\:{the}\:{rebound},\:{find}\:{h}\:{in}\: \\ $$$${terms}\:{of}\:{a},\:{b}\:{and}\:{d}. \\ $$$${the}\:{collision}\:{between}\:{the}\:{ball}\:{and} \\ $$$${the}\:{ground}\:{is}\:{elastic}. \\ $$
Answered by mr W last updated on 18/Jun/25

Commented by mr W last updated on 19/Jun/25

Commented by mr W last updated on 19/Jun/25

$${y}={b}\left(\sqrt{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}−\mathrm{1}\right) \\ $$$$\frac{{dy}}{{dx}}=\frac{{bx}}{{a}^{\mathrm{2}} \sqrt{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}} \\ $$$${at}\:{x}={d}: \\ $$$${y}_{{P}} ={b}\left(\sqrt{\mathrm{1}+\frac{{d}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}−\mathrm{1}\right) \\ $$$$\mathrm{tan}\:\theta=\frac{{bd}}{{a}^{\mathrm{2}} \sqrt{\mathrm{1}+\frac{{d}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}} \\ $$$${v}=\sqrt{\mathrm{2}{g}\left({h}−{y}_{{P}} \right)} \\ $$$${t}=\frac{{d}}{{v}\:\mathrm{sin}\:\mathrm{2}\theta} \\ $$$$−{y}_{{P}} ={v}\:\mathrm{cos}\:\mathrm{2}\theta\:{t}−\frac{{gt}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$−{b}\left(\sqrt{\mathrm{1}+\frac{{d}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}−\mathrm{1}\right)=\frac{{d}}{\mathrm{tan}\:\mathrm{2}\theta}−\frac{{d}^{\mathrm{2}} }{\mathrm{4}\left({h}−{y}_{{P}} \right)}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{2}} \:\mathrm{2}\theta}\right) \\ $$$$\Rightarrow{h}={b}\left(\sqrt{\mathrm{1}+\frac{{d}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}−\mathrm{1}\right)+\frac{{d}^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{2}} \:\mathrm{2}\theta}\right)}{\mathrm{4}{b}\left(\sqrt{\mathrm{1}+\frac{{d}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}+\frac{{d}}{{b}\:\mathrm{tan}\:\mathrm{2}\theta}−\mathrm{1}\right)} \\ $$
Commented by fantastic last updated on 19/Jun/25