Menu Close

solve-e-2y-y-cosx-dy-dx-e-y-sin2x-klipto-quanta-




Question Number 222175 by klipto last updated on 19/Jun/25
solve  (e^(2y) −y)cosx(dy/dx)=e^y sin2x  klipto−quanta
$$\boldsymbol{\mathrm{solve}} \\ $$$$\left(\boldsymbol{\mathrm{e}}^{\mathrm{2}\boldsymbol{\mathrm{y}}} −\boldsymbol{\mathrm{y}}\right)\boldsymbol{\mathrm{cosx}}\frac{\boldsymbol{\mathrm{dy}}}{\boldsymbol{\mathrm{dx}}}=\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{y}}} \boldsymbol{\mathrm{sin}}\mathrm{2}\boldsymbol{\mathrm{x}} \\ $$$$\boldsymbol{\mathrm{klipto}}−\boldsymbol{\mathrm{quanta}} \\ $$
Answered by som(math1967) last updated on 20/Jun/25
 ∫((e^(2y) −y)/e^y )dy=∫((sin2x)/(cosx))dx  ∫e^y dy−∫ye^(−y) dy=∫((2sinxcosxdx)/(cosx))  ⇒e^y −y∫e^(−y) dy+∫{(dy/dy)∫e^(−y) dy}dy      =2∫sinxdx  ⇒e^y +ye^(−y) +e^(−y) =−2cosx +C  ⇒e^y +e^(−y) (1+y)+2cosx=C
$$\:\int\frac{{e}^{\mathrm{2}{y}} −{y}}{{e}^{{y}} }{dy}=\int\frac{{sin}\mathrm{2}{x}}{{cosx}}{dx} \\ $$$$\int{e}^{{y}} {dy}−\int{ye}^{−{y}} {dy}=\int\frac{\mathrm{2}{sinxcosxdx}}{{cosx}} \\ $$$$\Rightarrow{e}^{{y}} −{y}\int{e}^{−{y}} {dy}+\int\left\{\frac{{dy}}{{dy}}\int{e}^{−{y}} {dy}\right\}{dy} \\ $$$$\:\:\:\:=\mathrm{2}\int{sinxdx} \\ $$$$\Rightarrow{e}^{{y}} +{ye}^{−{y}} +{e}^{−{y}} =−\mathrm{2}{cosx}\:+{C} \\ $$$$\Rightarrow{e}^{{y}} +{e}^{−{y}} \left(\mathrm{1}+{y}\right)+\mathrm{2}{cosx}={C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *