Menu Close

x-2-x-2x-1-2-12-




Question Number 222141 by fantastic last updated on 19/Jun/25
x^2 +((x/(2x−1)))^2 =12
$${x}^{\mathrm{2}} +\left(\frac{{x}}{\mathrm{2}{x}−\mathrm{1}}\right)^{\mathrm{2}} =\mathrm{12} \\ $$
Answered by Rasheed.Sindhi last updated on 19/Jun/25
x^2 (2x−1)^2 −12(2x−1)^2 +x^2 =0  (2x−1)^2 (x^2 −12)+x^2 =0  (4x^2 −4x+1)(x^2 −12)+x^2 =0  4x^4 −4x^3 +x^2 −48x^2 +48x−12+x^2 =0  4x^4 −4x^3 −46x^2 +48x−12=0  2x^4 −2x^3 −23x^2 +24x−6=0  (x^2 −4x+2)(2x^2 +6x−3)=0  x^2 −4x+2=0 ∨ 2x^2 +6x−3=0  x=((4±(√(16−8)) )/2) ∨ ((−6±(√(36+24)))/4)     =2±(√2) ∨ ((−3±(√(15)) )/2)
$${x}^{\mathrm{2}} \left(\mathrm{2}{x}−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{12}\left(\mathrm{2}{x}−\mathrm{1}\right)^{\mathrm{2}} +{x}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left(\mathrm{2}{x}−\mathrm{1}\right)^{\mathrm{2}} \left({x}^{\mathrm{2}} −\mathrm{12}\right)+{x}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left(\mathrm{4}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −\mathrm{12}\right)+{x}^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{4}{x}^{\mathrm{4}} −\mathrm{4}{x}^{\mathrm{3}} +{x}^{\mathrm{2}} −\mathrm{48}{x}^{\mathrm{2}} +\mathrm{48}{x}−\mathrm{12}+{x}^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{4}{x}^{\mathrm{4}} −\mathrm{4}{x}^{\mathrm{3}} −\mathrm{46}{x}^{\mathrm{2}} +\mathrm{48}{x}−\mathrm{12}=\mathrm{0} \\ $$$$\mathrm{2}{x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{3}} −\mathrm{23}{x}^{\mathrm{2}} +\mathrm{24}{x}−\mathrm{6}=\mathrm{0} \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{2}\right)\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{6}{x}−\mathrm{3}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{2}=\mathrm{0}\:\vee\:\mathrm{2}{x}^{\mathrm{2}} +\mathrm{6}{x}−\mathrm{3}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{4}\pm\sqrt{\mathrm{16}−\mathrm{8}}\:}{\mathrm{2}}\:\vee\:\frac{−\mathrm{6}\pm\sqrt{\mathrm{36}+\mathrm{24}}}{\mathrm{4}} \\ $$$$\:\:\:=\mathrm{2}\pm\sqrt{\mathrm{2}}\:\vee\:\frac{−\mathrm{3}\pm\sqrt{\mathrm{15}}\:}{\mathrm{2}} \\ $$
Commented by fantastic last updated on 19/Jun/25
N^¡^C_ε^! _→  ^↘  _(↗↑)  _↗
$$\underset{\nearrow} {\mathbb{N}}^{\underset{\nearrow\uparrow} {¡}^{\overset{\searrow} {\mathbb{C}}_{\underset{\rightarrow} {\epsilon}^{!} } } } \\ $$
Answered by Ghisom last updated on 19/Jun/25
x^2 +(x^2 /(4x^2 −4x+1))=12  x=((2x^4 −23x^2 −6)/(2(x^2 −12)))  let′s square it...  x^2 =(((2x^4 −23x^2 −6)^2 )/(4(x^2 −12)^2 ))  transforming  x^8 −24x^6 +((601)/4)x^4 −75x^2 +9=0  x=±(√(t+6))  t^4 −((263)/4)t^2 +1080=0  t=±4(√2)∨t=±((3(√(15)))/2)  now we must test these:  x∈±{2−(√2), 2+(√2), −(3/2)+((√(15))/2), (3/2)+((√(15))/2)}  ⇒  x=2±(√2)∨x=−(3/2)±((√(15))/2)
$${x}^{\mathrm{2}} +\frac{{x}^{\mathrm{2}} }{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{1}}=\mathrm{12} \\ $$$${x}=\frac{\mathrm{2}{x}^{\mathrm{4}} −\mathrm{23}{x}^{\mathrm{2}} −\mathrm{6}}{\mathrm{2}\left({x}^{\mathrm{2}} −\mathrm{12}\right)} \\ $$$$\mathrm{let}'\mathrm{s}\:\mathrm{square}\:\mathrm{it}… \\ $$$${x}^{\mathrm{2}} =\frac{\left(\mathrm{2}{x}^{\mathrm{4}} −\mathrm{23}{x}^{\mathrm{2}} −\mathrm{6}\right)^{\mathrm{2}} }{\mathrm{4}\left({x}^{\mathrm{2}} −\mathrm{12}\right)^{\mathrm{2}} } \\ $$$$\mathrm{transforming} \\ $$$${x}^{\mathrm{8}} −\mathrm{24}{x}^{\mathrm{6}} +\frac{\mathrm{601}}{\mathrm{4}}{x}^{\mathrm{4}} −\mathrm{75}{x}^{\mathrm{2}} +\mathrm{9}=\mathrm{0} \\ $$$${x}=\pm\sqrt{{t}+\mathrm{6}} \\ $$$${t}^{\mathrm{4}} −\frac{\mathrm{263}}{\mathrm{4}}{t}^{\mathrm{2}} +\mathrm{1080}=\mathrm{0} \\ $$$${t}=\pm\mathrm{4}\sqrt{\mathrm{2}}\vee{t}=\pm\frac{\mathrm{3}\sqrt{\mathrm{15}}}{\mathrm{2}} \\ $$$$\mathrm{now}\:\mathrm{we}\:\mathrm{must}\:\mathrm{test}\:\mathrm{these}: \\ $$$${x}\in\pm\left\{\mathrm{2}−\sqrt{\mathrm{2}},\:\mathrm{2}+\sqrt{\mathrm{2}},\:−\frac{\mathrm{3}}{\mathrm{2}}+\frac{\sqrt{\mathrm{15}}}{\mathrm{2}},\:\frac{\mathrm{3}}{\mathrm{2}}+\frac{\sqrt{\mathrm{15}}}{\mathrm{2}}\right\} \\ $$$$\Rightarrow \\ $$$${x}=\mathrm{2}\pm\sqrt{\mathrm{2}}\vee{x}=−\frac{\mathrm{3}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{15}}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *