Menu Close

d-dt-V-3-q-r-t-dV-V-J-q-r-t-da-V-3-S-q-r-t-dV-V-3-q-r-t-t-dV-V-3-J-q-r-t-dV-V-3-S-q-r-t-dV-V-3-t-




Question Number 222191 by wewji12 last updated on 20/Jun/25
((d  )/dt) ∫_( V^( 3) ) ρ_q (r,t)dV=−∮_( ∂V)  J_q (r,t)∙da+∫_( V^( 3) )  S_q (r,t)dV  ∫_( V^( 3) )  ((∂ρ_q (r,t))/∂t) dV=−∫_V^( 3)  ▽^→ ∙J_q (r,t)dV+∫_( V^( 3) ) S_q (r,t)dV  ∫_( V^( 3) ) [ (∂ρ/∂t)+▽^→ ∙J^  (r,t)−S(r,t)]dV=0  ∴((∂ρ_q (r,t))/∂t)+▽^→ ∙J_q (r,t)=S_q (r,t)
$$\frac{\mathrm{d}\:\:}{\mathrm{d}{t}}\:\int_{\:{V}^{\:\mathrm{3}} } \rho_{{q}} \left(\boldsymbol{\mathrm{r}},{t}\right)\mathrm{d}{V}=−\oint_{\:\partial{V}} \:\boldsymbol{\mathrm{J}}_{{q}} \left(\boldsymbol{\mathrm{r}},{t}\right)\centerdot\mathrm{d}\boldsymbol{\mathrm{a}}+\int_{\:{V}^{\:\mathrm{3}} } \:{S}_{{q}} \left(\boldsymbol{\mathrm{r}},{t}\right)\mathrm{d}{V} \\ $$$$\int_{\:{V}^{\:\mathrm{3}} } \:\frac{\partial\rho_{{q}} \left(\boldsymbol{\mathrm{r}},{t}\right)}{\partial{t}}\:\mathrm{dV}=−\int_{{V}^{\:\mathrm{3}} } \overset{\rightarrow} {\bigtriangledown}\centerdot\boldsymbol{\mathrm{J}}_{{q}} \left(\boldsymbol{\mathrm{r}},{t}\right)\mathrm{d}{V}+\int_{\:{V}^{\:\mathrm{3}} } {S}_{{q}} \left(\boldsymbol{\mathrm{r}},{t}\right)\mathrm{d}{V} \\ $$$$\int_{\:\mathcal{V}^{\:\mathrm{3}} } \left[\:\frac{\partial\rho}{\partial{t}}+\overset{\rightarrow} {\bigtriangledown}\centerdot\boldsymbol{\mathrm{J}}^{\:} \left(\boldsymbol{\mathrm{r}},{t}\right)−{S}\left(\boldsymbol{\mathrm{r}},{t}\right)\right]\mathrm{d}{V}=\mathrm{0} \\ $$$$\therefore\frac{\partial\rho_{{q}} \left(\boldsymbol{\mathrm{r}},{t}\right)}{\partial{t}}+\overset{\rightarrow} {\bigtriangledown}\centerdot\boldsymbol{\mathrm{J}}_{{q}} \left(\boldsymbol{\mathrm{r}},{t}\right)={S}_{{q}} \left(\boldsymbol{\mathrm{r}},{t}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *