Menu Close

Prove-that-a-b-a-c-a-d-b-c-b-d-c-d-divisible-by-12-with-a-b-c-d-Z-




Question Number 222352 by cryptograph last updated on 23/Jun/25
Prove that : (a−b)(a−c)(a−d)(b−c)(b−d)(c−d) divisible by 12, with a,b,c,d ∈Z
$${Prove}\:{that}\::\:\left({a}−{b}\right)\left({a}−{c}\right)\left({a}−{d}\right)\left({b}−{c}\right)\left({b}−{d}\right)\left({c}−{d}\right)\:{divisible}\:{by}\:\mathrm{12},\:{with}\:{a},{b},{c},{d}\:\in\mathbb{Z} \\ $$
Answered by vnm last updated on 23/Jun/25
Among four integers there will always be two   that are comparable modulo 3   and two pairs or three that are  comparable modulo 2,   so that at least one of the factors is  divisible by 3 and at least two  are divisible by 2.
$$\mathrm{Among}\:\mathrm{four}\:\mathrm{integers}\:\mathrm{there}\:\mathrm{will}\:\mathrm{always}\:\mathrm{be}\:\mathrm{two}\: \\ $$$$\mathrm{that}\:\mathrm{are}\:\mathrm{comparable}\:\mathrm{modulo}\:\mathrm{3}\: \\ $$$$\mathrm{and}\:\mathrm{two}\:\mathrm{pairs}\:\mathrm{or}\:\mathrm{three}\:\mathrm{that}\:\mathrm{are} \\ $$$$\mathrm{comparable}\:\mathrm{modulo}\:\mathrm{2}, \\ $$$$\:\mathrm{so}\:\mathrm{that}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{factors}\:\mathrm{is} \\ $$$$\mathrm{divisible}\:\mathrm{by}\:\mathrm{3}\:\mathrm{and}\:\mathrm{at}\:\mathrm{least}\:\mathrm{two} \\ $$$$\mathrm{are}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{2}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *