Menu Close

Question-222385




Question Number 222385 by ajfour last updated on 25/Jun/25
Commented by ajfour last updated on 25/Jun/25
Commented by ajfour last updated on 27/Jun/25
https://youtu.be/Nd0JeAO6fRY?si=87O09KtjNWiH7uXs
Answered by mr W last updated on 25/Jun/25
Commented by mr W last updated on 25/Jun/25
x=(√(r^2 −((p/( (√2)))−r)^2 ))=(√((√2)pr−(p^2 /2)))  r^2 +((√2)p+(p/( (√2)))+(√((√2)pr−(p^2 /2))))^2 =(R−r)^2   let (r/R)=λ=(1/5), ξ=(((√2)p)/R)  λ^2 +(((3ξ)/2)+(√(λξ−(ξ^2 /4))))^2 =(1−λ)^2   (3ξ+(√(4λξ−ξ^2 )))^2 =4(1−2λ)  3ξ+(√(4λξ−ξ^2 ))=2(√(1−2λ))=μ  (√(4λξ−ξ^2 ))=μ−3ξ  10ξ^2 −2(2λ+3μ)ξ+μ^2 =0  ⇒ξ=((2λ+3μ−(√(4λ^2 +12λμ−μ^2 )))/(10))  ξ=((λ+3(√(1−2λ))−(√(λ^2 +2λ−1+6λ(√(1−2λ)))))/5)  ⇒(p/R)=((λ+3(√(1−2λ))−(√(λ^2 +2λ−1+6λ(√(1−2λ)))))/(5(√2)))  example: R=1, r=(1/5)  p=(((√2)+3(√(30))−2(√(3(√(15))−7)))/(50))≈0.271
$${x}=\sqrt{{r}^{\mathrm{2}} −\left(\frac{{p}}{\:\sqrt{\mathrm{2}}}−{r}\right)^{\mathrm{2}} }=\sqrt{\sqrt{\mathrm{2}}{pr}−\frac{{p}^{\mathrm{2}} }{\mathrm{2}}} \\ $$$${r}^{\mathrm{2}} +\left(\sqrt{\mathrm{2}}{p}+\frac{{p}}{\:\sqrt{\mathrm{2}}}+\sqrt{\sqrt{\mathrm{2}}{pr}−\frac{{p}^{\mathrm{2}} }{\mathrm{2}}}\right)^{\mathrm{2}} =\left({R}−{r}\right)^{\mathrm{2}} \\ $$$${let}\:\frac{{r}}{{R}}=\lambda=\frac{\mathrm{1}}{\mathrm{5}},\:\xi=\frac{\sqrt{\mathrm{2}}{p}}{{R}} \\ $$$$\lambda^{\mathrm{2}} +\left(\frac{\mathrm{3}\xi}{\mathrm{2}}+\sqrt{\lambda\xi−\frac{\xi^{\mathrm{2}} }{\mathrm{4}}}\right)^{\mathrm{2}} =\left(\mathrm{1}−\lambda\right)^{\mathrm{2}} \\ $$$$\left(\mathrm{3}\xi+\sqrt{\mathrm{4}\lambda\xi−\xi^{\mathrm{2}} }\right)^{\mathrm{2}} =\mathrm{4}\left(\mathrm{1}−\mathrm{2}\lambda\right) \\ $$$$\mathrm{3}\xi+\sqrt{\mathrm{4}\lambda\xi−\xi^{\mathrm{2}} }=\mathrm{2}\sqrt{\mathrm{1}−\mathrm{2}\lambda}=\mu \\ $$$$\sqrt{\mathrm{4}\lambda\xi−\xi^{\mathrm{2}} }=\mu−\mathrm{3}\xi \\ $$$$\mathrm{10}\xi^{\mathrm{2}} −\mathrm{2}\left(\mathrm{2}\lambda+\mathrm{3}\mu\right)\xi+\mu^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\xi=\frac{\mathrm{2}\lambda+\mathrm{3}\mu−\sqrt{\mathrm{4}\lambda^{\mathrm{2}} +\mathrm{12}\lambda\mu−\mu^{\mathrm{2}} }}{\mathrm{10}} \\ $$$$\xi=\frac{\lambda+\mathrm{3}\sqrt{\mathrm{1}−\mathrm{2}\lambda}−\sqrt{\lambda^{\mathrm{2}} +\mathrm{2}\lambda−\mathrm{1}+\mathrm{6}\lambda\sqrt{\mathrm{1}−\mathrm{2}\lambda}}}{\mathrm{5}} \\ $$$$\Rightarrow\frac{{p}}{{R}}=\frac{\lambda+\mathrm{3}\sqrt{\mathrm{1}−\mathrm{2}\lambda}−\sqrt{\lambda^{\mathrm{2}} +\mathrm{2}\lambda−\mathrm{1}+\mathrm{6}\lambda\sqrt{\mathrm{1}−\mathrm{2}\lambda}}}{\mathrm{5}\sqrt{\mathrm{2}}} \\ $$$${example}:\:{R}=\mathrm{1},\:{r}=\frac{\mathrm{1}}{\mathrm{5}} \\ $$$${p}=\frac{\sqrt{\mathrm{2}}+\mathrm{3}\sqrt{\mathrm{30}}−\mathrm{2}\sqrt{\mathrm{3}\sqrt{\mathrm{15}}−\mathrm{7}}}{\mathrm{50}}\approx\mathrm{0}.\mathrm{271} \\ $$
Commented by ajfour last updated on 25/Jun/25
thanks sir, i reasoned that the other  root is also valid: in this case square′s  top right corner creeps inside the circle  and goes to touch the other side of  circle′s circumference.  here p ≈ 0.44
$${thanks}\:{sir},\:{i}\:{reasoned}\:{that}\:{the}\:{other} \\ $$$${root}\:{is}\:{also}\:{valid}:\:{in}\:{this}\:{case}\:{square}'{s} \\ $$$${top}\:{right}\:{corner}\:{creeps}\:{inside}\:{the}\:{circle} \\ $$$${and}\:{goes}\:{to}\:{touch}\:{the}\:{other}\:{side}\:{of} \\ $$$${circle}'{s}\:{circumference}. \\ $$$${here}\:{p}\:\approx\:\mathrm{0}.\mathrm{44} \\ $$
Commented by mr W last updated on 25/Jun/25
i have rejected the other root for  the hatched square:
$${i}\:{have}\:{rejected}\:{the}\:{other}\:{root}\:{for} \\ $$$${the}\:{hatched}\:{square}: \\ $$
Commented by mr W last updated on 25/Jun/25
Commented by ajfour last updated on 25/Jun/25
quite pragmatic of you.
$${quite}\:{pragmatic}\:{of}\:{you}. \\ $$
Commented by mr W last updated on 25/Jun/25
can we find a geometric way to   solve following equation system?  y^2 +z^2 +λyz=a^2   z^2 +x^2 +λzx=b^2   x^2 +y^2 +λxy=c^2   for contant λ=−2 cos θ ∈(−2, 1]   and x, y, z ∈R^+
$${can}\:{we}\:{find}\:{a}\:{geometric}\:{way}\:{to}\: \\ $$$${solve}\:{following}\:{equation}\:{system}? \\ $$$${y}^{\mathrm{2}} +{z}^{\mathrm{2}} +\lambda{yz}={a}^{\mathrm{2}} \\ $$$${z}^{\mathrm{2}} +{x}^{\mathrm{2}} +\lambda{zx}={b}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\lambda{xy}={c}^{\mathrm{2}} \\ $$$${for}\:{contant}\:\lambda=−\mathrm{2}\:\mathrm{cos}\:\theta\:\in\left(−\mathrm{2},\:\mathrm{1}\right]\: \\ $$$${and}\:{x},\:{y},\:{z}\:\in{R}^{+} \\ $$
Commented by mr W last updated on 25/Jun/25
Commented by mr W last updated on 25/Jun/25
can we put a triangle of any size  inside an open regular pyramid of  infinite size?
$${can}\:{we}\:{put}\:{a}\:{triangle}\:{of}\:{any}\:{size} \\ $$$${inside}\:{an}\:{open}\:{regular}\:{pyramid}\:{of} \\ $$$${infinite}\:{size}? \\ $$
Commented by mr W last updated on 25/Jun/25
Commented by ajfour last updated on 25/Jun/25
Q. 222404
$${Q}.\:\mathrm{222404} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *