Question Number 222501 by hu last updated on 28/Jun/25

$${This}\:{is}\:{VERY}\:{HARD} \\ $$$$\begin{cases}{\begin{cases}{{x}+{y}=\mathrm{0}}\\{{l}\left({y}\right)=\mathrm{1}}\end{cases}}\\{\begin{cases}{{x}\in\mathbb{N}}\\{−{y}=\begin{cases}{{v\%},\:\:{for}\:{x}\circlearrowleft\gamma\left(\mathrm{1}\right)}\\{−{v\%},\:\:{for}\:{x}\looparrowright\theta\left(\oint_{−{x}} ^{\:\mathrm{0}} \frac{{c}}{\mathrm{7}}\right)}\end{cases}}\end{cases}}\end{cases} \\ $$$${x}=?,\:{y}=? \\ $$
Answered by wewji12 last updated on 28/Jun/25

$${x}=−\mathrm{3}\boldsymbol{{i}}+\sqrt{\mathrm{7}}\boldsymbol{\psi}^{\left(\mathrm{0}\right)} \left(\mathrm{3}+\mathrm{2}\boldsymbol{{i}}\right)\boldsymbol{\zeta}\left(\mathrm{3}−\frac{\mathrm{2}}{\mathrm{3}}\boldsymbol{{i}}\right) \\ $$$${y}=\boldsymbol{{i}}+\sqrt{\mathrm{7}}{G}\pi\mathrm{ln}\left(\mathrm{3}\boldsymbol{{i}}−\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}}}\right) \\ $$