Menu Close

Compare-a-arcctg-2-b-arccos-2-2-c-arctg-2-




Question Number 222743 by hardmath last updated on 06/Jul/25
Compare:  a = arcctg (√2)  b = arccos ((√2)/2)  c = arctg (√2)
$$\mathrm{Compare}: \\ $$$$\boldsymbol{\mathrm{a}}\:=\:\mathrm{arcctg}\:\sqrt{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{b}}\:=\:\mathrm{arccos}\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{c}}\:=\:\mathrm{arctg}\:\sqrt{\mathrm{2}} \\ $$
Answered by mr W last updated on 06/Jul/25
a=cot^(−1) (√2)=tan^(−1) (1/( (√2)))  b=cos^(−1) ((√2)/2)=(π/4)=tan^(−1) 1  (1/( (√2)))<1<(√2)  ⇒tan^(−1) (1/( (√2)))<tan^(−1) 1<tan^(−1) (√2)  ⇒a<b<c  ✓
$${a}=\mathrm{cot}^{−\mathrm{1}} \sqrt{\mathrm{2}}=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$${b}=\mathrm{cos}^{−\mathrm{1}} \frac{\sqrt{\mathrm{2}}}{\mathrm{2}}=\frac{\pi}{\mathrm{4}}=\mathrm{tan}^{−\mathrm{1}} \mathrm{1} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}<\mathrm{1}<\sqrt{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}<\mathrm{tan}^{−\mathrm{1}} \mathrm{1}<\mathrm{tan}^{−\mathrm{1}} \sqrt{\mathrm{2}} \\ $$$$\Rightarrow{a}<{b}<{c}\:\:\checkmark \\ $$
Commented by hardmath last updated on 06/Jul/25
cool thank you dear professor
$$\mathrm{cool}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *