Menu Close

lim-x-0-1-cos-x-x-xcos-x-




Question Number 222756 by Osefavour last updated on 06/Jul/25
lim_(x→0) ((1−(√(cos(x))))/( x−xcos((√x))))
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\sqrt{\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{x}}\right)}}{\:\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{xcos}}\left(\sqrt{\boldsymbol{\mathrm{x}}}\right)} \\ $$
Answered by gregori last updated on 07/Jul/25
=lim_(x→0)  ((1−cos x)/(x(1−cos (√x) )(1+(√(cos x)))))   = lim_(x→0)  ((2sin^2 ((x/2)))/(2x(2sin^2 (((√x)/2))))    = lim_(x→0)  ((x^2 /4)/(2x((x/4)))) = (1/2)
$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:{x}}{{x}\left(\mathrm{1}−\mathrm{cos}\:\sqrt{{x}}\:\right)\left(\mathrm{1}+\sqrt{\mathrm{cos}\:{x}}\right)} \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{\mathrm{2}{x}\left(\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{\sqrt{{x}}}{\mathrm{2}}\right)\right.}\: \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{{x}^{\mathrm{2}} }{\mathrm{4}}}{\mathrm{2}{x}\left(\frac{{x}}{\mathrm{4}}\right)}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *