Question Number 222756 by Osefavour last updated on 06/Jul/25

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\sqrt{\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{x}}\right)}}{\:\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{xcos}}\left(\sqrt{\boldsymbol{\mathrm{x}}}\right)} \\ $$
Answered by gregori last updated on 07/Jul/25

$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:{x}}{{x}\left(\mathrm{1}−\mathrm{cos}\:\sqrt{{x}}\:\right)\left(\mathrm{1}+\sqrt{\mathrm{cos}\:{x}}\right)} \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{\mathrm{2}{x}\left(\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{\sqrt{{x}}}{\mathrm{2}}\right)\right.}\: \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{{x}^{\mathrm{2}} }{\mathrm{4}}}{\mathrm{2}{x}\left(\frac{{x}}{\mathrm{4}}\right)}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$