Menu Close

Question-222747




Question Number 222747 by fantastic last updated on 06/Jul/25
Commented by fantastic last updated on 06/Jul/25
r in terms of R and α
$${r}\:{in}\:{terms}\:{of}\:{R}\:{and}\:\alpha \\ $$
Answered by mr W last updated on 06/Jul/25
Commented by mr W last updated on 07/Jul/25
(√((R−r)^2 −r^2 ))=r cot (α/2)−R  R^2 −2Rr=r^2 cot^2  (α/2)−2rR cot (α/2)+R^2   r=((2R(cot (α/2)−1))/(cot^2  (α/2)))    =2R(1−tan (α/2))tan (α/2)  ✓
$$\sqrt{\left({R}−{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} }={r}\:\mathrm{cot}\:\frac{\alpha}{\mathrm{2}}−{R} \\ $$$${R}^{\mathrm{2}} −\mathrm{2}{Rr}={r}^{\mathrm{2}} \mathrm{cot}^{\mathrm{2}} \:\frac{\alpha}{\mathrm{2}}−\mathrm{2}{rR}\:\mathrm{cot}\:\frac{\alpha}{\mathrm{2}}+{R}^{\mathrm{2}} \\ $$$${r}=\frac{\mathrm{2}{R}\left(\mathrm{cot}\:\frac{\alpha}{\mathrm{2}}−\mathrm{1}\right)}{\mathrm{cot}^{\mathrm{2}} \:\frac{\alpha}{\mathrm{2}}} \\ $$$$\:\:=\mathrm{2}{R}\left(\mathrm{1}−\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}\right)\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}\:\:\checkmark \\ $$
Commented by fantastic last updated on 06/Jul/25
thanks I got the same
$${thanks}\:{I}\:{got}\:{the}\:{same} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *