Menu Close

Question-222830




Question Number 222830 by Tawa11 last updated on 08/Jul/25
Answered by Frix last updated on 08/Jul/25
Σ_(i=1) ^k ...=  =((32)/9)Σ_(i=1) ^k (i^3 /k^4 )+120Σ_(i=1) ^k (i^2 /k^2 )+176Σ_(i=1) ^k (i^2 /k^3 )+2832Σ_(i=1) ^k (i/k^2 )+15768Σ_(i=1) ^k (1/k)=  =((8(k+1)^2 )/(9k^2 ))+((20(k+1)(2k+1))/k)+((888(k+1)(2k+1))/(3k^2 ))+((1416(k+1))/k)+15768=  =40k+((155732)/9)+((13732)/(9k))+((272)/(9k^2 ))  ⇒lim_(k→∞)  ... =∞
$$\underset{{i}=\mathrm{1}} {\overset{{k}} {\sum}}…= \\ $$$$=\frac{\mathrm{32}}{\mathrm{9}}\underset{{i}=\mathrm{1}} {\overset{{k}} {\sum}}\frac{{i}^{\mathrm{3}} }{{k}^{\mathrm{4}} }+\mathrm{120}\underset{{i}=\mathrm{1}} {\overset{{k}} {\sum}}\frac{{i}^{\mathrm{2}} }{{k}^{\mathrm{2}} }+\mathrm{176}\underset{{i}=\mathrm{1}} {\overset{{k}} {\sum}}\frac{{i}^{\mathrm{2}} }{{k}^{\mathrm{3}} }+\mathrm{2832}\underset{{i}=\mathrm{1}} {\overset{{k}} {\sum}}\frac{{i}}{{k}^{\mathrm{2}} }+\mathrm{15768}\underset{{i}=\mathrm{1}} {\overset{{k}} {\sum}}\frac{\mathrm{1}}{{k}}= \\ $$$$=\frac{\mathrm{8}\left({k}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{9}{k}^{\mathrm{2}} }+\frac{\mathrm{20}\left({k}+\mathrm{1}\right)\left(\mathrm{2}{k}+\mathrm{1}\right)}{{k}}+\frac{\mathrm{888}\left({k}+\mathrm{1}\right)\left(\mathrm{2}{k}+\mathrm{1}\right)}{\mathrm{3}{k}^{\mathrm{2}} }+\frac{\mathrm{1416}\left({k}+\mathrm{1}\right)}{{k}}+\mathrm{15768}= \\ $$$$=\mathrm{40}{k}+\frac{\mathrm{155732}}{\mathrm{9}}+\frac{\mathrm{13732}}{\mathrm{9}{k}}+\frac{\mathrm{272}}{\mathrm{9}{k}^{\mathrm{2}} } \\ $$$$\Rightarrow\underset{{k}\rightarrow\infty} {\mathrm{lim}}\:…\:=\infty \\ $$
Commented by Tawa11 last updated on 08/Jul/25
Thanks sir.  I appreciate.
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{appreciate}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *