Question Number 222850 by MrGaster last updated on 09/Jul/25

$$\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \frac{{x}^{−{x}} {e}^{−{x}} }{\Gamma\left(\mathrm{1}−{x}\right)}{dx} \\ $$
Answered by MrGaster last updated on 09/Jul/25

$$\Gamma\left(\mathrm{1}−{x}\right)\Gamma\left({x}\right)=\frac{\pi}{\mathrm{sin}\left(\pi{x}\right)} \\ $$$${I}=\int_{\mathrm{0}} ^{\infty} \frac{{x}^{−{x}} {e}^{−{x}} }{\Gamma\left(\mathrm{1}−{x}\right)}{dx} \\ $$$$=\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\infty} \frac{\Gamma\left({x}\right)\mathrm{sin}\left(\pi{x}\right)}{{x}^{{e}} {e}^{{x}} }{dx} \\ $$$${I}=\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\infty} \frac{\Gamma\left({x}\right)\mathrm{sin}\left(\pi{x}\right)}{{x}^{{e}} {e}^{{x}} }{dx} \\ $$$$=\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}\left(\pi{x}\right)}{{e}^{{x}} }\int_{\mathrm{0}} ^{\infty} {t}^{{x}−\mathrm{1}} {e}^{−{tx}} {dtdx} \\ $$$$=\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{t}}\int_{\mathrm{0}} ^{\infty} \left({te}^{−\left({t}+\mathrm{1}\right)} \right)^{{x}} \mathrm{sin}\left(\pi{x}\right){dxdt} \\ $$$${a}={te}^{−\left({t}+\mathrm{1}\right)} \\ $$$${I}=\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{t}}\int_{\mathrm{0}} ^{\infty} {a}^{{x}} \mathrm{sin}\left(\pi{x}\right){dxdt} \\ $$$$=\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\infty} \frac{\pi}{\mathrm{ln}^{\mathrm{2}} \left({a}\right)+\pi^{\mathrm{2}} }\:\frac{{dt}}{{t}} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left(\mathrm{ln}\:{t}−{t}+\mathrm{1}\right)^{\mathrm{2}} +\pi^{\mathrm{2}} }\:\frac{{dt}}{{t}} \\ $$$$=\int_{−\infty} ^{\infty} \frac{\mathrm{1}}{\left({e}^{{u}} −{u}+\mathrm{1}\right)^{\mathrm{2}} +\pi^{\mathrm{2}} }{du} \\ $$$${u}=\mathrm{ln}\:{t} \\ $$$${I}=\int_{−\infty} ^{\infty} \frac{\mathrm{1}}{\left({e}^{{u}} −{u}+\mathrm{1}\right)^{\mathrm{2}} +\pi^{\mathrm{2}} }{du} \\ $$$$=\int_{−\infty} ^{\infty} \frac{\mathrm{1}}{\left({e}^{{u}} −{u}+\mathrm{1}+{i}\pi\right)\left({e}^{{u}} −{u}+\mathrm{1}−{i}\pi\right)}{du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\pi{i}}\int_{−\infty} ^{\infty} \left(\frac{\mathrm{1}}{{e}^{{u}} −{u}+\mathrm{1}−{i}\pi}−\frac{\mathrm{1}}{{e}^{{u}} −{u}+\mathrm{1}+{i}\pi}\right){du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\pi{i}}\underset{{R}\rightarrow\infty} {\mathrm{lim}}{I}_{\mathrm{1}} −{I}_{\mathrm{2}} \\ $$$${z}={u}+{i}\pi\:\mathrm{and}\:{z}={u}−{i}\pi \\ $$$$\mathrm{Replace}\:\mathrm{two}\:\mathrm{variables}\:{I}_{\mathrm{1}} \: \\ $$$$\mathrm{and}\:{I}_{\mathrm{2}} \:\mathrm{respectively}. \\ $$$${I}_{\mathrm{1}} =\int_{−{R}} ^{{R}} \frac{\mathrm{1}}{{e}^{{u}} −{u}+\mathrm{1}−{i}\pi}{du}=\int_{{R}+{i}\pi} ^{−{R}−{i}\pi} \frac{\mathrm{1}}{−{e}^{{z}} −{z}+\mathrm{1}}{dz} \\ $$$${I}_{\mathrm{2}} =\int_{−{R}} ^{{R}} \frac{\mathrm{1}}{{e}^{{u}} −{u}+\mathrm{1}+{i}\pi}{du}=\int_{−{R}−{i}\pi} ^{{R}−{i}\pi} \frac{\mathrm{1}}{−{e}^{{z}} −{z}−\mathrm{1}}{dz} \\ $$$$\underset{{R}\rightarrow\infty} {\mathrm{lim}}\int_{{R}−{i}\pi} ^{{R}+{i}\pi} \frac{\mathrm{1}}{−{e}^{{z}} −{z}+\mathrm{1}}{dz}=\mathrm{0} \\ $$$$\underset{{R}\rightarrow\infty} {\mathrm{lim}}\int_{−{R}−{i}\pi} ^{−{R}+{i}\pi} \frac{\mathrm{1}}{−{e}^{{z}} −{z}+\mathrm{1}}{dz}=\mathrm{0} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}\pi{i}}\underset{{R}\rightarrow\infty} {\mathrm{lim}}\left({I}_{\mathrm{1}} −{I}_{\mathrm{2}} \right) \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}\pi{i}}\oint_{{C}} \frac{\mathrm{1}}{−{e}^{{z}} −{z}+\mathrm{1}}{dz} \\ $$$$=\mathrm{Res}\left(\frac{\mathrm{1}}{{e}^{{z}} +{z}−\mathrm{1}},{z}=\mathrm{0}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}} \\ $$