Menu Close

find-the-possible-root-of-x-3-2x-2-5x-6-0-using-the-fixed-point-iteration-method-




Question Number 222856 by OmoloyeMichael last updated on 09/Jul/25
find the possible root of x^3 −2x^2 −5x+6=0  using the fixed point iteration method?
$$\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{possible}}\:\boldsymbol{{root}}\:\boldsymbol{{of}}\:\boldsymbol{{x}}^{\mathrm{3}} −\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{5}\boldsymbol{{x}}+\mathrm{6}=\mathrm{0} \\ $$$$\boldsymbol{{using}}\:\boldsymbol{{the}}\:\boldsymbol{{fixed}}\:\boldsymbol{{point}}\:\boldsymbol{{iteration}}\:\boldsymbol{{method}}? \\ $$
Answered by AntonCWX8 last updated on 09/Jul/25
x^3 −2x^2 −5x+6=0  x^3 =2x^2 +5x−6  x=2+(5/x)−(6/x^2 )    Let x_0 =0.5  x_1 =2+(5/(0.5))−(6/(0.5^2 ))=−12  x_2 =2+(5/(−12))−(6/((−12)^2 ))=1.541667  x_3 =2.718773  Continue this process and you′ll get x=3
$${x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{6}=\mathrm{0} \\ $$$${x}^{\mathrm{3}} =\mathrm{2}{x}^{\mathrm{2}} +\mathrm{5}{x}−\mathrm{6} \\ $$$${x}=\mathrm{2}+\frac{\mathrm{5}}{{x}}−\frac{\mathrm{6}}{{x}^{\mathrm{2}} } \\ $$$$ \\ $$$${Let}\:{x}_{\mathrm{0}} =\mathrm{0}.\mathrm{5} \\ $$$${x}_{\mathrm{1}} =\mathrm{2}+\frac{\mathrm{5}}{\mathrm{0}.\mathrm{5}}−\frac{\mathrm{6}}{\mathrm{0}.\mathrm{5}^{\mathrm{2}} }=−\mathrm{12} \\ $$$${x}_{\mathrm{2}} =\mathrm{2}+\frac{\mathrm{5}}{−\mathrm{12}}−\frac{\mathrm{6}}{\left(−\mathrm{12}\right)^{\mathrm{2}} }=\mathrm{1}.\mathrm{541667} \\ $$$${x}_{\mathrm{3}} =\mathrm{2}.\mathrm{718773} \\ $$$${Continue}\:{this}\:{process}\:{and}\:{you}'{ll}\:{get}\:{x}=\mathrm{3} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *